Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
This brief briefly addresses the problem of power flow solution for direct-current (dc) networks with radial configuration and constant power loads (CPLs). It proposes a novel iterative method based on the upper triangular relationship between nodal and branch currents, it also uses a primitive impe...
- Autores:
-
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Gil-González, Walter
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9533
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9533
https://ieeexplore.ieee.org/document/8756198
- Palabra clave:
- Direct-current
Radial distribution networks
Numerical methods
Power flow method
Primitive impedance matrix
Triangular matrix
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
id |
UTB2_57e1ed9e3662321f982ff7b937dffb9a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9533 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs |
title |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs |
spellingShingle |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs Direct-current Radial distribution networks Numerical methods Power flow method Primitive impedance matrix Triangular matrix |
title_short |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs |
title_full |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs |
title_fullStr |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs |
title_full_unstemmed |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs |
title_sort |
Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Gil-González, Walter |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Grisales-Noreña, Luis Fernando Gil-González, Walter |
dc.subject.keywords.spa.fl_str_mv |
Direct-current Radial distribution networks Numerical methods Power flow method Primitive impedance matrix Triangular matrix |
topic |
Direct-current Radial distribution networks Numerical methods Power flow method Primitive impedance matrix Triangular matrix |
description |
This brief briefly addresses the problem of power flow solution for direct-current (dc) networks with radial configuration and constant power loads (CPLs). It proposes a novel iterative method based on the upper triangular relationship between nodal and branch currents, it also uses a primitive impedance matrix. The main advantage of this method lies in the possibility of avoiding inversions of non-diagonal matrices, which allows its convergence to be improved in terms of the number of iterations and processing times required in comparison to classical admittance-based methods. Three different radial dc resistive networks composed by 21, 33, and 69 nodes are employed to validate the effectiveness of the proposed power flow solution method. For comparison purposes, the Newton-Raphson method, and also successive approximations and Taylor-based approaches are implemented. All simulations have performed in MATLAB software. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-07 |
dc.date.accessioned.none.fl_str_mv |
2020-11-04T20:32:31Z |
dc.date.available.none.fl_str_mv |
2020-11-04T20:32:31Z |
dc.date.submitted.none.fl_str_mv |
2020-10-30 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Gil González, Walter. (2019). Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. Circuits and Systems II: Express Briefs, IEEE Transactions on. PP. 10.1109/TCSII.2019.2927290. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9533 |
dc.identifier.url.none.fl_str_mv |
https://ieeexplore.ieee.org/document/8756198 |
dc.identifier.doi.none.fl_str_mv |
10.1109/TCSII.2019.2927290 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Gil González, Walter. (2019). Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. Circuits and Systems II: Express Briefs, IEEE Transactions on. PP. 10.1109/TCSII.2019.2927290. 10.1109/TCSII.2019.2927290 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/9533 https://ieeexplore.ieee.org/document/8756198 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
eu_rights_str_mv |
closedAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 6, June 2020) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/1/71.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/3/71.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/4/71.pdf.jpg |
bitstream.checksum.fl_str_mv |
0aecb511c55be00ad05f0f8d077b8b5b e20ad307a1c5f3f25af9304a7a7c86b6 fd4bf79c1069284b4c901ddea939dc6c dd06289fccbaef5ea8151a93fa2cdb5d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021805496598528 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Noreña, Luis Fernando98ba5e2d-fa38-40c5-a05c-d73772e8ab17Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a082020-11-04T20:32:31Z2020-11-04T20:32:31Z2019-072020-10-30Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Gil González, Walter. (2019). Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. Circuits and Systems II: Express Briefs, IEEE Transactions on. PP. 10.1109/TCSII.2019.2927290.https://hdl.handle.net/20.500.12585/9533https://ieeexplore.ieee.org/document/875619810.1109/TCSII.2019.2927290Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis brief briefly addresses the problem of power flow solution for direct-current (dc) networks with radial configuration and constant power loads (CPLs). It proposes a novel iterative method based on the upper triangular relationship between nodal and branch currents, it also uses a primitive impedance matrix. The main advantage of this method lies in the possibility of avoiding inversions of non-diagonal matrices, which allows its convergence to be improved in terms of the number of iterations and processing times required in comparison to classical admittance-based methods. Three different radial dc resistive networks composed by 21, 33, and 69 nodes are employed to validate the effectiveness of the proposed power flow solution method. For comparison purposes, the Newton-Raphson method, and also successive approximations and Taylor-based approaches are implemented. All simulations have performed in MATLAB software.application/pdfengIEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 6, June 2020)Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct-currentRadial distribution networksNumerical methodsPower flow methodPrimitive impedance matrixTriangular matrixinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresO. D. Montoya, "On linear analysis of the power flow equations for DC and AC grids with CPLs", IEEE Trans. Circuits Syst. II Exp. Briefs.J. W. Simpson-Porco, F. Dörfler and F. Bullo, "On resistive networks of constant-power devices", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 62, no. 8, pp. 811-815, Aug. 2015.D. K. Molzahn, "Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 65, no. 5, pp. 672-676, May 2018.A. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids", Elect. Power Syst. Res., vol. 151, pp. 149-153, Oct. 2017.J. Grainger and W. Stevenson, Power System Analysis, New York, NY, USA:McGraw-Hill, 1994.C. N. Papadimitriou, E. I. Zountouridou and N. D. Hatziargyriou, "Review of hierarchical control in DC microgrids", Elect. Power Syst. Res., vol. 122, pp. 159-167, May 2015.S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State of the art in research on microgrids: A review", IEEE Access, vol. 3, pp. 890-925, 2015.A. Garcés, "On the convergence of Newton’s method in power flow studies for DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5770-5777, Sep. 2018.O. D. Montoya, L. F. Grisales-Noreña, D. González-Montoya, C. A. Ramos-Paja and A. Garces, "Linear power flow formulation for low-voltage DC power grids", Elect. Power Syst. Res., vol. 163, pp. 375-381, Oct. 2018.O. D. Montoya, V. M. Garrido, W. Gil-González and L. Grisales-Noreña, "Power flow analysis in DC grids: Two alternative numerical methods", IEEE Trans. Circuits Syst. II Exp. Briefs.W. Gil-González, O. D. Montoya, A. Garcés and A. Escobar-Mejía, "Supervisory LMI-based state-feedback control for current source power conditioning of SMES", Proc. 9th Annu. IEEE Green Technol. Conf. (GreenTech), pp. 145-150, Mar. 2017.A. Garces, D. Montoya and R. Torres, "Optimal power flow in multiterminal HVDC systems considering DC/DC converters", Proc. IEEE 25th Int. Symp. Ind. Electron. (ISIE), pp. 1212-1217, Jun. 2016.J. Li, F. Liu, Z. Wang, S. H. Low and S. Mei, "Optimal power flow in stand-alone DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496-5506, Sep. 2018.O. D. Montoya, "Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 4, pp. 642-646, Apr. 2019.P. Aravindhababu, S. Ganapathy and K. R. Nayar, "A novel technique for the analysis of radial distribution systems", Int. J. Elect. Power Energy Syst., vol. 23, no. 3, pp. 167-171, 2001.P. M. D. O.-D. Jesus, M. A. Alvarez and J. M. Yusta, "Distribution power flow method based on a real quasi-symmetric matrix", Elect. Power Syst. Res., vol. 95, pp. 148-159, Feb. 2013.A. Marini, S. S. Mortazavi, L. Piegari and M.-S. Ghazizadeh, "An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations", Elect. Power Syst. Res., vol. 170, pp. 229-243, May 2019.T. Shen, Y. Li and J. Xiang, "A graph-based power flow method for balanced distribution systems", Energies, vol. 11, no. 3, pp. 511, Feb. 2018.O. D. Montoya, W. Gil-González and A. Garces, "Optimal power flow on DC microgrids: A quadratic convex approximation", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 6, pp. 1018-1022, Jun. 2019.L. F. Grisales-Noreña, D. Gonzalez-Montoya and C. A. Ramos-Paja, "Optimal sizing and location of distributed generators based on PBIL and PSO techniques", Energies, vol. 11, no. 4, pp. 1-27, Feb. 2018.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL71.pdf71.pdfapplication/pdf61313https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/1/71.pdf0aecb511c55be00ad05f0f8d077b8b5bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT71.pdf.txt71.pdf.txtExtracted texttext/plain1054https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/3/71.pdf.txtfd4bf79c1069284b4c901ddea939dc6cMD53THUMBNAIL71.pdf.jpg71.pdf.jpgGenerated Thumbnailimage/jpeg46242https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/4/71.pdf.jpgdd06289fccbaef5ea8151a93fa2cdb5dMD5420.500.12585/9533oai:repositorio.utb.edu.co:20.500.12585/95332023-05-26 11:14:15.875Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |