Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs

This brief briefly addresses the problem of power flow solution for direct-current (dc) networks with radial configuration and constant power loads (CPLs). It proposes a novel iterative method based on the upper triangular relationship between nodal and branch currents, it also uses a primitive impe...

Full description

Autores:
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Gil-González, Walter
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9533
Acceso en línea:
https://hdl.handle.net/20.500.12585/9533
https://ieeexplore.ieee.org/document/8756198
Palabra clave:
Direct-current
Radial distribution networks
Numerical methods
Power flow method
Primitive impedance matrix
Triangular matrix
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_57e1ed9e3662321f982ff7b937dffb9a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9533
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
title Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
spellingShingle Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
Direct-current
Radial distribution networks
Numerical methods
Power flow method
Primitive impedance matrix
Triangular matrix
title_short Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
title_full Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
title_fullStr Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
title_full_unstemmed Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
title_sort Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLs
dc.creator.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Gil-González, Walter
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Gil-González, Walter
dc.subject.keywords.spa.fl_str_mv Direct-current
Radial distribution networks
Numerical methods
Power flow method
Primitive impedance matrix
Triangular matrix
topic Direct-current
Radial distribution networks
Numerical methods
Power flow method
Primitive impedance matrix
Triangular matrix
description This brief briefly addresses the problem of power flow solution for direct-current (dc) networks with radial configuration and constant power loads (CPLs). It proposes a novel iterative method based on the upper triangular relationship between nodal and branch currents, it also uses a primitive impedance matrix. The main advantage of this method lies in the possibility of avoiding inversions of non-diagonal matrices, which allows its convergence to be improved in terms of the number of iterations and processing times required in comparison to classical admittance-based methods. Three different radial dc resistive networks composed by 21, 33, and 69 nodes are employed to validate the effectiveness of the proposed power flow solution method. For comparison purposes, the Newton-Raphson method, and also successive approximations and Taylor-based approaches are implemented. All simulations have performed in MATLAB software.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-07
dc.date.accessioned.none.fl_str_mv 2020-11-04T20:32:31Z
dc.date.available.none.fl_str_mv 2020-11-04T20:32:31Z
dc.date.submitted.none.fl_str_mv 2020-10-30
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Gil González, Walter. (2019). Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. Circuits and Systems II: Express Briefs, IEEE Transactions on. PP. 10.1109/TCSII.2019.2927290.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9533
dc.identifier.url.none.fl_str_mv https://ieeexplore.ieee.org/document/8756198
dc.identifier.doi.none.fl_str_mv 10.1109/TCSII.2019.2927290
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Gil González, Walter. (2019). Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. Circuits and Systems II: Express Briefs, IEEE Transactions on. PP. 10.1109/TCSII.2019.2927290.
10.1109/TCSII.2019.2927290
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/9533
https://ieeexplore.ieee.org/document/8756198
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 6, June 2020)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/1/71.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/3/71.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/4/71.pdf.jpg
bitstream.checksum.fl_str_mv 0aecb511c55be00ad05f0f8d077b8b5b
e20ad307a1c5f3f25af9304a7a7c86b6
fd4bf79c1069284b4c901ddea939dc6c
dd06289fccbaef5ea8151a93fa2cdb5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021805496598528
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Noreña, Luis Fernando98ba5e2d-fa38-40c5-a05c-d73772e8ab17Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a082020-11-04T20:32:31Z2020-11-04T20:32:31Z2019-072020-10-30Montoya Giraldo, Oscar & Grisales-Noreña, Luis & Gil González, Walter. (2019). Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. Circuits and Systems II: Express Briefs, IEEE Transactions on. PP. 10.1109/TCSII.2019.2927290.https://hdl.handle.net/20.500.12585/9533https://ieeexplore.ieee.org/document/875619810.1109/TCSII.2019.2927290Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis brief briefly addresses the problem of power flow solution for direct-current (dc) networks with radial configuration and constant power loads (CPLs). It proposes a novel iterative method based on the upper triangular relationship between nodal and branch currents, it also uses a primitive impedance matrix. The main advantage of this method lies in the possibility of avoiding inversions of non-diagonal matrices, which allows its convergence to be improved in terms of the number of iterations and processing times required in comparison to classical admittance-based methods. Three different radial dc resistive networks composed by 21, 33, and 69 nodes are employed to validate the effectiveness of the proposed power flow solution method. For comparison purposes, the Newton-Raphson method, and also successive approximations and Taylor-based approaches are implemented. All simulations have performed in MATLAB software.application/pdfengIEEE Transactions on Circuits and Systems II: Express Briefs ( Volume: 67, Issue: 6, June 2020)Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids With CPLsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct-currentRadial distribution networksNumerical methodsPower flow methodPrimitive impedance matrixTriangular matrixinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasInvestigadoresO. D. Montoya, "On linear analysis of the power flow equations for DC and AC grids with CPLs", IEEE Trans. Circuits Syst. II Exp. Briefs.J. W. Simpson-Porco, F. Dörfler and F. Bullo, "On resistive networks of constant-power devices", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 62, no. 8, pp. 811-815, Aug. 2015.D. K. Molzahn, "Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 65, no. 5, pp. 672-676, May 2018.A. Garces, "Uniqueness of the power flow solutions in low voltage direct current grids", Elect. Power Syst. Res., vol. 151, pp. 149-153, Oct. 2017.J. Grainger and W. Stevenson, Power System Analysis, New York, NY, USA:McGraw-Hill, 1994.C. N. Papadimitriou, E. I. Zountouridou and N. D. Hatziargyriou, "Review of hierarchical control in DC microgrids", Elect. Power Syst. Res., vol. 122, pp. 159-167, May 2015.S. Parhizi, H. Lotfi, A. Khodaei and S. Bahramirad, "State of the art in research on microgrids: A review", IEEE Access, vol. 3, pp. 890-925, 2015.A. Garcés, "On the convergence of Newton’s method in power flow studies for DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5770-5777, Sep. 2018.O. D. Montoya, L. F. Grisales-Noreña, D. González-Montoya, C. A. Ramos-Paja and A. Garces, "Linear power flow formulation for low-voltage DC power grids", Elect. Power Syst. Res., vol. 163, pp. 375-381, Oct. 2018.O. D. Montoya, V. M. Garrido, W. Gil-González and L. Grisales-Noreña, "Power flow analysis in DC grids: Two alternative numerical methods", IEEE Trans. Circuits Syst. II Exp. Briefs.W. Gil-González, O. D. Montoya, A. Garcés and A. Escobar-Mejía, "Supervisory LMI-based state-feedback control for current source power conditioning of SMES", Proc. 9th Annu. IEEE Green Technol. Conf. (GreenTech), pp. 145-150, Mar. 2017.A. Garces, D. Montoya and R. Torres, "Optimal power flow in multiterminal HVDC systems considering DC/DC converters", Proc. IEEE 25th Int. Symp. Ind. Electron. (ISIE), pp. 1212-1217, Jun. 2016.J. Li, F. Liu, Z. Wang, S. H. Low and S. Mei, "Optimal power flow in stand-alone DC microgrids", IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5496-5506, Sep. 2018.O. D. Montoya, "Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 4, pp. 642-646, Apr. 2019.P. Aravindhababu, S. Ganapathy and K. R. Nayar, "A novel technique for the analysis of radial distribution systems", Int. J. Elect. Power Energy Syst., vol. 23, no. 3, pp. 167-171, 2001.P. M. D. O.-D. Jesus, M. A. Alvarez and J. M. Yusta, "Distribution power flow method based on a real quasi-symmetric matrix", Elect. Power Syst. Res., vol. 95, pp. 148-159, Feb. 2013.A. Marini, S. S. Mortazavi, L. Piegari and M.-S. Ghazizadeh, "An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations", Elect. Power Syst. Res., vol. 170, pp. 229-243, May 2019.T. Shen, Y. Li and J. Xiang, "A graph-based power flow method for balanced distribution systems", Energies, vol. 11, no. 3, pp. 511, Feb. 2018.O. D. Montoya, W. Gil-González and A. Garces, "Optimal power flow on DC microgrids: A quadratic convex approximation", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 66, no. 6, pp. 1018-1022, Jun. 2019.L. F. Grisales-Noreña, D. Gonzalez-Montoya and C. A. Ramos-Paja, "Optimal sizing and location of distributed generators based on PBIL and PSO techniques", Energies, vol. 11, no. 4, pp. 1-27, Feb. 2018.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL71.pdf71.pdfapplication/pdf61313https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/1/71.pdf0aecb511c55be00ad05f0f8d077b8b5bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT71.pdf.txt71.pdf.txtExtracted texttext/plain1054https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/3/71.pdf.txtfd4bf79c1069284b4c901ddea939dc6cMD53THUMBNAIL71.pdf.jpg71.pdf.jpgGenerated Thumbnailimage/jpeg46242https://repositorio.utb.edu.co/bitstream/20.500.12585/9533/4/71.pdf.jpgdd06289fccbaef5ea8151a93fa2cdb5dMD5420.500.12585/9533oai:repositorio.utb.edu.co:20.500.12585/95332023-05-26 11:14:15.875Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=