Phonetic detection for Hate Speech Spreaders on Twitter

Nowadays, hate messages have become the object of study on social media. Efficient and effective detection of hate profiles requires various scientific disciplines, such as computational linguistics and sociology. Here, we illustrate how we used lexical and phonetic features to determine if the auth...

Full description

Autores:
Puertas, Edwin
Martinez-Santos, Juan Carlos
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12373
Acceso en línea:
https://hdl.handle.net/20.500.12585/12373
Palabra clave:
Feature extraction
Hate speech spreader
Phonetic feature
Phonetic syllable
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_577693897792c84d9e2311152be6f181
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12373
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Phonetic detection for Hate Speech Spreaders on Twitter
title Phonetic detection for Hate Speech Spreaders on Twitter
spellingShingle Phonetic detection for Hate Speech Spreaders on Twitter
Feature extraction
Hate speech spreader
Phonetic feature
Phonetic syllable
title_short Phonetic detection for Hate Speech Spreaders on Twitter
title_full Phonetic detection for Hate Speech Spreaders on Twitter
title_fullStr Phonetic detection for Hate Speech Spreaders on Twitter
title_full_unstemmed Phonetic detection for Hate Speech Spreaders on Twitter
title_sort Phonetic detection for Hate Speech Spreaders on Twitter
dc.creator.fl_str_mv Puertas, Edwin
Martinez-Santos, Juan Carlos
dc.contributor.author.none.fl_str_mv Puertas, Edwin
Martinez-Santos, Juan Carlos
dc.subject.keywords.spa.fl_str_mv Feature extraction
Hate speech spreader
Phonetic feature
Phonetic syllable
topic Feature extraction
Hate speech spreader
Phonetic feature
Phonetic syllable
description Nowadays, hate messages have become the object of study on social media. Efficient and effective detection of hate profiles requires various scientific disciplines, such as computational linguistics and sociology. Here, we illustrate how we used lexical and phonetic features to determine if the author spreads hate speech. This article presents a novel strategy for the characterization of the Twitter profile based on the generation of lexical and phonetic user features that serve as input to a set of classifiers. The results are part of our participation in the PAN 2021 in the CLEF in the task of Profiling Hate Speech Spreaders on Twitter
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:47:24Z
dc.date.available.none.fl_str_mv 2023-07-21T20:47:24Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Puertas, E., Martinez-Santos, J.C. Phonetic detection for Hate Speech Spreaders on Twitter (2021) CEUR Workshop Proceedings, 2936, pp. 2118-2125.
dc.identifier.issn.none.fl_str_mv 16130073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12373
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Puertas, E., Martinez-Santos, J.C. Phonetic detection for Hate Speech Spreaders on Twitter (2021) CEUR Workshop Proceedings, 2936, pp. 2118-2125.
16130073
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12373
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv CEUR Workshop Proceedings - vol. 2936 (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/1/Phonetic%20detection%20for%20Hate%20Speech%20Spreaders%20on%20Twitter.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/4/Phonetic%20detection%20for%20Hate%20Speech%20Spreaders%20on%20Twitter.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/5/Phonetic%20detection%20for%20Hate%20Speech%20Spreaders%20on%20Twitter.pdf.jpg
bitstream.checksum.fl_str_mv 0f32af2549a6f316ab5a1735e478a971
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
24d2a6b0165887c535707ed80c3194f8
fb61b3cabe70e29dd25023bf28f08444
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021756733620224
spelling Puertas, Edwin5a1b1566-e112-43dc-8ac7-310ea9af8f05Martinez-Santos, Juan Carlos5c958644-c78d-401d-8ba9-bbd39fe773182023-07-21T20:47:24Z2023-07-21T20:47:24Z2021-092023-07Puertas, E., Martinez-Santos, J.C. Phonetic detection for Hate Speech Spreaders on Twitter (2021) CEUR Workshop Proceedings, 2936, pp. 2118-2125.16130073https://hdl.handle.net/20.500.12585/12373Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarNowadays, hate messages have become the object of study on social media. Efficient and effective detection of hate profiles requires various scientific disciplines, such as computational linguistics and sociology. Here, we illustrate how we used lexical and phonetic features to determine if the author spreads hate speech. This article presents a novel strategy for the characterization of the Twitter profile based on the generation of lexical and phonetic user features that serve as input to a set of classifiers. The results are part of our participation in the PAN 2021 in the CLEF in the task of Profiling Hate Speech Spreaders on Twitter8 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2CEUR Workshop Proceedings - vol. 2936 (2021)Phonetic detection for Hate Speech Spreaders on Twitterinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Feature extractionHate speech spreaderPhonetic featurePhonetic syllableCartagena de IndiasSchmidt, A., Wiegand, M. A Survey on Hate Speech Detection using Natural Language Processing (2017) SocialNLP 2017 - 5th International Workshop on Natural Language Processing for Social Media, Proceedings of the Workshop AFNLP SIG SocialNLP, pp. 1-10. Cited 698 times. https://aclanthology.org/volumes/W17-11/ ISBN: 978-194562642-5Ferrari, A., Consoli, A. (2016) Building accurate hav exploiting user profiling and sentiment analysis, pp. 1-595. Cited 2 times. ArXiv abs/1609.07302Fatima, M., Hasan, K., Anwar, S., Nawab, R.M.A. Multilingual author profiling on Facebook (2017) Information Processing and Management, 53 (4), pp. 886-904. Cited 59 times. doi: 10.1016/j.ipm.2017.03.005Puertas, E., Alvarado, J. A. Modelo que mejore la detección de polaridades hechas con word embedding con la ayuda de predictores fonéticos y el apoyo de elementos emocionales (2020) ENEDI-2020, pp. 95-104. ENEDI-2020 https://www.acofi.edu.co/eiei2020/wpcontent/uploads/2020/10/Memorias-ENEDIRangel, F., Rosso, P., Sarracén, G. L. D. L. P., Fersini, E., Chulvi, B. Profiling Hate Speech Spreaders on Twitter Task at PAN 2021 (2021) CLEF 2021 Labs and Workshops, pp. 1-7. Cited 21 times. Notebook Papers, CEUR-WS.orgBevendorff, J., Chulvi, B., Fersini, E., Heini, A., Kestemont, M., Kredens, K., Mayerl, M., (...), Zangerle, E. Overview of PAN 2022: Authorship Verification, Profiling Irony and Stereotype Spreaders, Style Change Detection, and Trigger Detection: Extended Abstract (2022) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13186 LNCS, pp. 331-338. Cited 50 times. https://www.springer.com/series/558 ISBN: 978-303099738-0 doi: 10.1007/978-3-030-99739-7_42Potthast, M., Gollub, T., Wiegmann, M., Stein, B. TIRA Integrated Research Architecture (2019) Information Retrieval Evaluation in a Changing World, The Information Retrieval Series, pp. 1-7. Cited 250 times. N. Ferro, C. Peters (Eds), Springer, Berlin Heidelberg New YorkFortuna, P., Nunes, S. A survey on automatic detection of hate speech in text (2018) ACM Computing Surveys, 51 (4), art. no. 3232676. Cited 527 times. http://dl.acm.org/citation.cfm?id=J204 doi: 10.1145/3232676Da Silva, S.C., Ferreira, T.C., Ramos, R.M.S., Paraboni, I. Data-driven and psycholinguistics-motivated approaches to hate speech detection (2020) Computacion y Sistemas, 24 (3), pp. 1179-1188. Cited 5 times. https://www.cys.cic.ipn.mx/ojs/index.php/CyS/article/view/3478 doi: 10.13053/CYS-24-3-3478Rangel, F., Rosso, P. Overview of the 7th author profiling task at Pan 2019: Bots and gender profiling in twitter (2019) CEUR Workshop Proceedings, 2380. Cited 89 times. http://ceur-ws.org/Rangel, F., Giachanou, A., Ghanem, B., Rosso, P. Overview of the 8th author profiling task at pan 2020: Profiling fake news spreaders on twitter (2020) CLEF, pp. 1-7. Cited 32 times.Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel, F., Rosso, P., (...), Sanguinetti, M. SemEval-2019 task 5: Multilingual detection of hate speech against immigrants and women in Twitter (2019) NAACL HLT 2019 - International Workshop on Semantic Evaluation, SemEval 2019, Proceedings of the 13th Workshop, pp. 54-63. Cited 515 times. https://aclanthology.org/events/semeval-2019/#s19-2 ISBN: 978-195073706-2Cambria, E., Poria, S., Hazarika, D., Kwok, K. SenticNet 5: Discovering conceptual primitives for sentiment analysis by means of context embeddings (2018) 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 1795-1802. Cited 294 times. https://aaai.org/Library/AAAI/aaai18contents.php ISBN: 978-157735800-8Puertas, E. (2020) Embedding of phonetic syllables in english https://doi.org/10.5281/zenodo.4299251Puertas, E. (2020) Embedding of phonetic syllables in spanish https://doi.org/10.5281/zenodo.4299242Antonín, M. A. M., Delor, M. T., Màrquez, L., Bertran, M. Anotación semiautomática con papeles temáticos de los corpus cess-ece (2007) Procesamiento del Lenguaje Natural, pp. 67-76. Cited 5 times.Macleod, C., Ide, N., Grishman, R. The American National Corpus: A standardized resource for American English (2000) 2nd International Conference on Language Resources and Evaluation, LREC 2000. Cited 13 times. http://www.lrec-conf.org/proceedings/lrec2000/html/paper/p_all.htmMortensen, D. R., Dalmia, S., Littell, P. Epitran: Precision G2P for many languages (2018) Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), European Language Resources Association (ELRA), pp. 1-4628. N. C. C. chair), K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, T. Tokunaga (Eds), Paris, FrancePuertas, E., Moreno-Sandoval, L. G., Plaza-del Arco, F. M., Alvarado-Valencia, J. A., Pomares-Quimbaya, A., Alfonso, L. Bots and gender profiling on twitter using sociolinguistic features (2019) CLEF (Working Notes), pp. 1-8.RANGEL, F., CHULVI, B., PEÑA, G. L. D. L., FERSINI, E., ROSSO, P. (2021) Profiling hate speech spreaders on twitter. Cited 5 times. https://doi.org/10.5281/zenodo.4603578http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPhonetic detection for Hate Speech Spreaders on Twitter.pdfPhonetic detection for Hate Speech Spreaders on Twitter.pdfapplication/pdf132651https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/1/Phonetic%20detection%20for%20Hate%20Speech%20Spreaders%20on%20Twitter.pdf0f32af2549a6f316ab5a1735e478a971MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPhonetic detection for Hate Speech Spreaders on Twitter.pdf.txtPhonetic detection for Hate Speech Spreaders on Twitter.pdf.txtExtracted texttext/plain5378https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/4/Phonetic%20detection%20for%20Hate%20Speech%20Spreaders%20on%20Twitter.pdf.txt24d2a6b0165887c535707ed80c3194f8MD54THUMBNAILPhonetic detection for Hate Speech Spreaders on Twitter.pdf.jpgPhonetic detection for Hate Speech Spreaders on Twitter.pdf.jpgGenerated Thumbnailimage/jpeg7151https://repositorio.utb.edu.co/bitstream/20.500.12585/12373/5/Phonetic%20detection%20for%20Hate%20Speech%20Spreaders%20on%20Twitter.pdf.jpgfb61b3cabe70e29dd25023bf28f08444MD5520.500.12585/12373oai:repositorio.utb.edu.co:20.500.12585/123732023-07-22 00:17:36.636Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=