Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene
Sulfur compounds are removed from propylene through purification processes. However, these processes are not 100% effective, so low concentrations of compounds such as H2S may be present in polymer-grade propylene. This article studies the effects of H2S content on polypropylene polymerization throu...
- Autores:
-
Hernández Fernández, Joaquin
Cano, Heidi
Aldas, Miguel
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12473
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12473
- Palabra clave:
- Hydrogen sulfide
Ligands
Polypropylene
Catalyst
Degradation
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/publicdomain/zero/1.0/
id |
UTB2_57367de6fc3328f59775119a0eeea8f7 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12473 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene |
title |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene |
spellingShingle |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene Hydrogen sulfide Ligands Polypropylene Catalyst Degradation LEMB |
title_short |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene |
title_full |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene |
title_fullStr |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene |
title_full_unstemmed |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene |
title_sort |
Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene |
dc.creator.fl_str_mv |
Hernández Fernández, Joaquin Cano, Heidi Aldas, Miguel |
dc.contributor.author.none.fl_str_mv |
Hernández Fernández, Joaquin Cano, Heidi Aldas, Miguel |
dc.subject.keywords.spa.fl_str_mv |
Hydrogen sulfide Ligands Polypropylene Catalyst Degradation |
topic |
Hydrogen sulfide Ligands Polypropylene Catalyst Degradation LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Sulfur compounds are removed from propylene through purification processes. However, these processes are not 100% effective, so low concentrations of compounds such as H2S may be present in polymer-grade propylene. This article studies the effects of H2S content on polypropylene polymerization through the controlled dosage of this compound with concentrations between 0.07 and 5 ppm and its monitoring during the process to determine possible reaction mechanisms and evaluate variations in properties of the material by TGA, FTIR, MFI, and XDR analysis. It was found that the fluidity index increases directly proportional to the concentration of H2S. In addition, the thermo oxidative degradation is explained by means of the proposed reaction mechanisms of the active center of the Ziegler–Natta catalyst with the H2S molecule and the formation of substances with functional groups such as alcohol, ketones, aldehydes, CO, and CO2 by the oxidation of radical complexes. This study shows for the first time a reaction mechanism between the active center formed for polymerization and H2S, in addition to showing how trace impurities in the raw materials can affect the process, highlighting the importance of optimizing the processes of removal and purification of polymer-grade materials |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-09-19 |
dc.date.accessioned.none.fl_str_mv |
2023-09-05T19:19:40Z |
dc.date.available.none.fl_str_mv |
2023-09-05T19:19:40Z |
dc.date.submitted.none.fl_str_mv |
2023-09-02 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. https://doi.org/10.3390/polym14183910 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12473 |
dc.identifier.doi.none.fl_str_mv |
10.3390/polym14183910 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. https://doi.org/10.3390/polym14183910 10.3390/polym14183910 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12473 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
CC0 1.0 Universal |
rights_invalid_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ CC0 1.0 Universal http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Polymers, Vol. 14 N° 18 (2022) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/1/polymers-14-03910.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/4/polymers-14-03910.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/5/polymers-14-03910.pdf.jpg |
bitstream.checksum.fl_str_mv |
eebb4db95546e27bf24e89076a9f550f 42fd4ad1e89814f5e4a476b409eb708c e20ad307a1c5f3f25af9304a7a7c86b6 deca20f8a0c3978c2ff9175fb52a1642 801c06bd051521611bbf8dd9aa2efe8d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021646612168704 |
spelling |
Hernández Fernández, Joaquinc9c120ef-5174-40a7-b55e-d858079b16ceCano, Heidia8afa093-c9c3-4c2a-8029-d3979620fe23Aldas, Miguelfa7609d9-70cf-4188-9594-0c629cd8eaaf2023-09-05T19:19:40Z2023-09-05T19:19:40Z2022-09-192023-09-02Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. https://doi.org/10.3390/polym14183910https://hdl.handle.net/20.500.12585/1247310.3390/polym14183910Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarSulfur compounds are removed from propylene through purification processes. However, these processes are not 100% effective, so low concentrations of compounds such as H2S may be present in polymer-grade propylene. This article studies the effects of H2S content on polypropylene polymerization through the controlled dosage of this compound with concentrations between 0.07 and 5 ppm and its monitoring during the process to determine possible reaction mechanisms and evaluate variations in properties of the material by TGA, FTIR, MFI, and XDR analysis. It was found that the fluidity index increases directly proportional to the concentration of H2S. In addition, the thermo oxidative degradation is explained by means of the proposed reaction mechanisms of the active center of the Ziegler–Natta catalyst with the H2S molecule and the formation of substances with functional groups such as alcohol, ketones, aldehydes, CO, and CO2 by the oxidation of radical complexes. This study shows for the first time a reaction mechanism between the active center formed for polymerization and H2S, in addition to showing how trace impurities in the raw materials can affect the process, highlighting the importance of optimizing the processes of removal and purification of polymer-grade materials11 páginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Polymers, Vol. 14 N° 18 (2022)Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropyleneinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Hydrogen sulfideLigandsPolypropyleneCatalystDegradationLEMBCartagena de IndiasKurahashi, E.; Wada, T.; Nagai, T.; Chammingkwan, P.; Terano, M.; Taniike, T. Synthesis of Polypropylene Functionalized with a Trace Amount of Reactive Functional Groups and Its Utilization in Graft-Type Nanocomposites. Polymer 2018, 158, 46–52.Karol, F.J.; Jacobson, F.I. Catalysis and the Unipol Process. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1986; Volume 25.Mier, J.; Artiaga, R.; García Soto, L. Síntesis de Polímeros. Pesos Moleculares. Conformación y Configuración. In Elementos Estructurales con Materiales Polímeros: Ferrol; Universidade, Servicio de Publicacións: A Coruña, Spain, 1997; pp. 11–48.Bailar, J.C.; Emeléus, H.J.; Nyholm, R.; Trotman-Dickenson, A.F. Comprehensive Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1973; Volume 3, ISBN 9781483283135.Nikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–1395.Nikolaevna Panchenko, V.; Viktorovna Vorontsova, L.; Aleksandrovich Zakharov, V. Ziegler-Natta Catalysts for Propylene Polymerization—Interaction of an External Donor with the Catalyst. Polyolefins J. 2017, 4, 87–97Vizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of Hydrogen Effect in Propylene Polymerization on (with) the MgCl2 -Supported Ziegler-Natta Catalyst-Part 2. Effect of CS2 on Polymerization Centres. Eur. Polym. J. 1994, 30, 1315–1318Kallio, K.; Wartmann, A.; Reichert, K.-H. Reactivation of a Poisoned Metallocene Catalyst by Irradiation with Visible Light; Wiley: Hoboken, NJ, USA, 2002; Volume 23Bahri-Laleh, N. Interaction of Different Poisons with MgCl2/TiCl4 Based Ziegler-Natta Catalysts. Appl. Surf. Sci. 2016, 379, 395–401.Asynkiewicz, S.P. Reactions of Organoaluminium Compounds with Electron Donors. Pure Appl. Chem. 1972, 30, 509–522.Hernández-Fernández, J. Quantification of Oxygenates, Sulphides, Thiols and Permanent Gases in Propylene. A Multiple Linear Regression Model to Predict the Loss of Efficiency in Polypropylene Production on an Industrial Scale. J. Chromatogr. A 2020, 1628, 461478Li, Z.; Yin, Y.; Wang, X.; Tu, D.M.; Kao, K.C. Formation and Inhibition of Free Radicals in Electrically Stressed and Aged Insulating Polymers. J. Appl. Polym. Sci. 2003, 89, 3416–3425Biswal, H.S. Hydrogen Bonds Involving Sulfur: New Insights from Ab Initio Calculations and Gas Phase Laser Spectroscopy. In Challenges and Advances in Computational Chemistry and Physics; Springer: Berlin/Heidelberg, Germany, 2015; Volume 19, pp. 15–45, ISBN 9783319141633Kaushik, R.; Ghosh, A.; Amilan Jose, D. Recent Progress in Hydrogen Sulphide (H2S) Sensors by Metal Displacement Approach. Coord. Chem. Rev. 2017, 347, 141–157. Zhang, J.; Li, X. Hydrogen Bonding in the Complexes Formed by Arsine and H-X Molecules: A Theoretical Study. Chem. Phys. Lett. 2019, 735, 136767Barnabas, F.A. Solution Reactions of HX Molecules (X = SH, CI, Br) With Dinuclear Palladium(I) Complexes Containing Bis(Diphenylphosphino)Methane; University of British Columbia: Vancouver, BC, Canada, 1989.Pluth, M.D.; Tonzetich, Z.J. Hydrosulfide Complexes of the Transition Elements: Diverse Roles in Bioinorganic, Cluster, Coordination, and Organometallic Chemistry. Chem. Soc. Rev. 2020, 49, 4070–4134.Livingstone, S.E. Metal Complexes of Ligands Containing Sulphur, Selenium, or Tellurium as Donor Atoms. Q. Rev. Chem. Soc. 1965, 19, 386.Lindoy, L.F. Reactions Involving Metal Complexes of Sulphur Ligands. Coord. Chem. Rev. 1969, 4, 41–71.. Enríquez Rodríguez, M. Funcionalización de Ligandos Coordinados; Universidad de Coruña: A Coruña, Spain, 2017.Hernández-Fernández, J. Quantification of Arsine and Phosphine in Industrial Atmospheric Emissions in Spain and Colombia. Implementation of Modified Zeolites to Reduce the Environmental Impact of Emissions. Atmos. Pollut. Res. 2021, 12, 167–176.Mensforth, E.J.; Hill, M.R.; Batten, S.R. Coordination Polymers of Sulphur-Donor Ligands. Inorganica. Chim. Acta 2013, 403, 9–24.Jafarinejad, S. Control and Treatment of Sulfur Compounds Specially Sulfur Oxides (SOx) Emissions from the Petroleum Industry: A Review. Chem. Int. 2016, 2, 242–253Shi, Q.; Wu, J. Review on Sulfur Compounds in Petroleum and Its Products: State-of-the-Art and Perspectives. Energy Fuels 2021, 35, 14445–14461.Zhang, L.L.; Wang, C.L.; Zhao, Y.S.; Yang, G.H.; Su, M.; Yang, C.H. Speciation and Quantification of Sulfur Compounds in Petroleum Asphaltenes by Derivative XANES Spectra. J. Fuel Chem. Technol. 2013, 41, 1328–1335Han, Y.; Zhang, Y.; Xu, C.; Hsu, C.S. Molecular Characterization of Sulfur-Containing Compounds in Petroleum. Fuel 2018, 221, 144–158Joaquin, H.-F.; Juan, L. Quantification of Poisons for Ziegler Natta Catalysts and Effects on the Production of Polypropylene by Gas Chromatographic with Simultaneous Detection: Pulsed Discharge Helium Ionization, Mass Spectrometry and Flame Ionization. J. Chromatogr. A 2020, 1614, 460736.van Krevelen, D.W.; te Nijenhuis, K. Typology of Properties. In Properties of Polymers; Elsevier: Amsterdam, The Netherlands, 2009; pp. 49–67Halasa, A.F.; Massie, J.M.; Ceresa, R.J. The Chemical Modification of Polymers. In The Science and Technology of Rubber; Academic Press: Cambridge, MA, USA, 2013; pp. 517–546Soroush, M.; Grady, M.C. Polymers, Polymerization Reactions, and Computational Quantum Chemistry. In Computational Quantum Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–16Chong, B.Y.K.; Krstina, J.; Le, T.P.T.; Moad, G.; Postma, A.; Rizzardo, E.; Thang, S.H. Thiocarbonylthio Compounds [S=C(Ph)S-R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 2003, 36, 2256–2272Shen, X.R.; Fu, Z.S.; Hu, J.; Wang, Q.; Fan, Z.Q. Mechanism of Propylene Polymerization with MgCl2 -Supported Ziegler-Natta Catalysts Based on Counting of Active Centers: The Role of External Electron Donor. J. Phys. Chem. C 2013, 117, 15174–15182Otsu, T.; Matsumoto, A. Controlled Synthesis of Polymers Using the Iniferter Technique: Developments in Living Radical Polymerization. In Microencapsulation Microgels Iniferters; Springer: Berlin/Heidelberg, Germany, 1998; pp. 75–137.Hernández-Fernandez, J.; Rodríguez, E. Determination of Phenolic Antioxidants Additives in Industrial Wastewater from Polypropylene Production Using Solid Phase Extraction with High-Performance Liquid Chromatography. J. Chromatogr. A 2019, 1607, 4604425. Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and Elimination of Substituted Synthetic Phenols and Volatile Organic Compounds in the Wastewater Treatment Plant during the Production of Industrial Scale Polypropylene. Chemosphere 2021, 263, 128027.Hernández-Fernández, J.; López-Martínez, J. Experimental Study of the Auto-Catalytic Effect of Triethylaluminum and TiCl4 Residuals at the Onset of Non-Additive Polypropylene Degradation and Their Impact on Thermo-Oxidative Degradation and Pyrolysis. J. Anal. Appl. Pyrolysis. 2021, 155, 105052Zhang, S.; Li, B.; Lin, M.; Li, Q.; Gao, S.; Yi, W. Effect of a Novel Phosphorus-Containing Compound on the Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene. J. Appl. Polym. Sci. 2011, 122, 3430–3439.Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379.. Standard Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. Available online: https://www.astm.org/ d1238-10.html (accessed on 28 August 2022)Bremner, T.; Rudin, A.; Cook, D.G. Melt Flow Index Values and Molecular Weight Distributions of Commercial Thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627.Ivin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.H.; Mahtab, R. Mechanism for the Stereospecific Polymerization of Olefins by Ziegler–Natta Catalysts. J. Chem. Soc. Chem. Commun. 1978, 14, 604–606Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123.Padilla Paz, R.M. Síntesis y Estudio de Cpmplejos Organometálicos de Iridio Con N-Aril-4,5-Dimetilen-1,3-Oxazolidin-2-Onas y Complejos de Cobre Con Furoiltioureas; Universidad Autónoma del estado de Hidalgo: Hidalgo, Mexico, 2006Eguren, L.; Korswagen, R. Catalizadores Ziegler-Natta Utilizados Para Polimerizar Propileno y Etileno. Revista de Química 1987, 1, 5–13NATTA, G.; PASQUON, I.; GIACHETTI, E. Kinetics of the Stereospecific Polymerization of Polypropylene to Isotactic Polymers. In Stereoregular Polymers and Stereospecific Polymerizations; Elsevier: Amsterdam, The Netherlands, 1967Zakharov, I.I.; Zakharov, V.A.; Zhidomirov, G.M. Quantum Chemical Studies of Propene, Ethylene, Acetylene and Dihydrogen Reactivity in the Insertion Reaction into the Titanium-Alkyl Bond; Wiley: Hoboken, NJ, USA, 1996; Volume 5.Cheremisinoff, N.P. Handbook of Polymer Science and Technology: Synthesis and Properties; Dekker, M., Ed.; Routledge: London, UK, 1989Chien, J.C.W.; Bres, P. Magnesium Chloride Supported High Mileage Catalysts for Olefin Polymerization. XIII. Effect of External Lewis Base on Ethylene Polymerization. J. Polym. Sci. A Polym. Chem. 1986, 24, 1967–1988Bhaduri, S.; Mukhopadhyay, S.; Kulkarni, S.A. Role of Titanium Oxidation States in Polymerization Activity of Ziegler-Natta Catalyst: A Density Functional Study. J. Organomet. Chem. 2006, 691, 2810–2820.Clough, R.L. Isotopic Exchange in Gamma-irradiated Mixtures of C24H50 and C24D50: Evidence of Free Radical Migration in the Solid State. J. Chem. Phys. 1987, 87, 1588Bahlouli, N.; Pessey, D.; Raveyre, C.; Guillet, J.; Ahzi, S.; Dahoun, A.; Hiver, J.M. Recycling Effects on the Rheological and Thermomechanical Properties of Polypropylene-Based Composites. Mater. Des. 2012, 33, 451–458.Aurrekoetxea, J.; Sarrionandia, M.A.; Urrutibeascoa, I.; Maspoch, M.L. Effects of Recycling on the Microstructure and the Mechanical Properties of Isotactic Polypropylene. J. Mater. Sci. 2001, 36, 2607–2613.Alvarado Chacon, F.; Brouwer, M.T.; Thoden van Velzen, E.U.; Smeding, I.W. A First Assessment of the Impact of Impurities in PP and PE Recycled Plastics; Wageningen Food & Biobased Research: Wageningen, The Netherlands, 2020.. Sheng, B.-R.; Li, B.; Xie, B.-H.; Yang, W.; Feng, J.-M.; Yang, M.-B. Influences of Molecular Weight and Crystalline Structure on Fracture Behavior of Controlled-Rheology-Polypropylene Prepared by Reactive Extrusion. Polym. Degrad. Stab. 2008, 93, 225–232.Dusseault, J.J.A.; Hsu, C.C. MgCI2 -Supported Ziegler-Natta Catalysts for Olefin Polymerization: Basic Structure, Mechanism, and Kinetic Behavior. J. Macromol. Sci. Part C 2006, 33, 103–145.Kissin, Y.V.; Marin, V.P.; Nelson, P.J. Propylene Polymerization Reactions with Supported Ziegler–Natta Catalysts: Observing Polymer Material Produced by a Single Active Center. J. Polym. Sci. A Polym. Chem. 2017, 55, 3832–3841Noristi, L.; Marchetti, E.; Baruzzi, G.; Sgarzi, P. Investigation on the Particle Growth Mechanism in Propylene Polymerization with MgCl2 -Supported Ziegler–Natta Catalysts. J. Polym. Sci. A Polym. Chem. 1994, 32, 3047–3059.Ashfaq, A.; Clochard, M.C.; Coqueret, X.; Dispenza, C.; Driscoll, M.S.; Ula ´nski, P.; Al-Sheikhly, M. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation. Polymers 2020, 12, 2877.Bhanu, V.A.; Kishore, K. Role of Oxygen in Polymerization Reactions. Chem. Rev. 1991, 91, 99–117.Newby, T.E. Study of Spontaneous Polymerisation Inhibition. Ph.D. Thesis, University of York, York, UK, 2014.George, A.; Harper, P. Melt Flow Index Determination in Polymer Process Control. GB9803894.6, 25 February 1998.Richaud, E.; Fayolle, B.; Davies, P. Tensile Properties of Polypropylene Fibers. In Handbook of Properties of Textile and Technical Fibres; Elsevier: Amsterdam, The Netherlands, 2018; pp. 515–543.Litvinov, V.M.; Ries, M.E.; Baughman, T.W.; Henke, A.; Matloka, P.P. Chain Entanglements in Polyethylene Melts. Why Is It Studied Again? Macromolecules 2013, 46, 541–547Montaudo, G.; Puglisi, C. Thermal Degradation Mechanisms in Condensation Polymers. In Developments in Polymer Degradation— 7; Springer: Dordrecht, The Netherlands, 1987; pp. 35–80.Commereuc, S.; Vaillant, D.; Philippart, J.L.; Lacoste, J.; Lemaire, J.; Carlsson, D.J. Photo and Thermal Decomposition of IPP Hydroperoxides. Polym. Degrad. Stab. 1997, 57, 175–182.Joaquin, H.-F.; Juan, L.-M. Autocatalytic Influence of Different Levels of Arsine on the Thermal Stability and Pyrolysis of Polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385http://purl.org/coar/resource_type/c_6501ORIGINALpolymers-14-03910.pdfpolymers-14-03910.pdfapplication/pdf1189074https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/1/polymers-14-03910.pdfeebb4db95546e27bf24e89076a9f550fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTpolymers-14-03910.pdf.txtpolymers-14-03910.pdf.txtExtracted texttext/plain51923https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/4/polymers-14-03910.pdf.txtdeca20f8a0c3978c2ff9175fb52a1642MD54THUMBNAILpolymers-14-03910.pdf.jpgpolymers-14-03910.pdf.jpgGenerated Thumbnailimage/jpeg8100https://repositorio.utb.edu.co/bitstream/20.500.12585/12473/5/polymers-14-03910.pdf.jpg801c06bd051521611bbf8dd9aa2efe8dMD5520.500.12585/12473oai:repositorio.utb.edu.co:20.500.12585/124732023-09-06 00:17:50.544Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |