Ecotoxicological assessment of perchlorate using in vitro and in vivo assays
Perchlorate is an inorganic ion widespread in the environment, generated as a natural and anthropogenic pollutant, with known endocrine disruption properties in the thyroid gland. Nonetheless, there are few reports of its ecotoxicological impact on wildlife. The aim of this study was to evaluate the...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8882
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8882
- Palabra clave:
- Biological models
Biota
Ecotoxicology
Effects
Endocrine disruption
Toxicity
Alga
Anthropogenic source
Assay
Assessment method
Bacterium
Biota
Crustacean
Earthworm
Ecological modeling
Ecotoxicology
Endocrine disruptor
Freshwater environment
Perchlorate
Pollution effect
Algae
Crustacea
Daphnia magna
Eisenia fetida
Selenastrum capricornutum
Vibrio fischeri
Perchlorate
Animal
Animal model
Bioassay
Drug effect
Ecotoxicology
Environmental monitoring
Human
Oligochaeta
Pollutant
Procedures
Species difference
Toxicity
Animals
Biological Assay
Ecotoxicology
Environmental monitoring
Environmental Pollutants
Humans
Models, Animal
Oligochaeta
Perchlorates
Species Specificity
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_572fc346eace06114aa84e73e4951285 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8882 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays |
title |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays |
spellingShingle |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays Biological models Biota Ecotoxicology Effects Endocrine disruption Toxicity Alga Anthropogenic source Assay Assessment method Bacterium Biota Crustacean Earthworm Ecological modeling Ecotoxicology Endocrine disruptor Freshwater environment Perchlorate Pollution effect Algae Crustacea Daphnia magna Eisenia fetida Selenastrum capricornutum Vibrio fischeri Perchlorate Animal Animal model Bioassay Drug effect Ecotoxicology Environmental monitoring Human Oligochaeta Pollutant Procedures Species difference Toxicity Animals Biological Assay Ecotoxicology Environmental monitoring Environmental Pollutants Humans Models, Animal Oligochaeta Perchlorates Species Specificity |
title_short |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays |
title_full |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays |
title_fullStr |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays |
title_full_unstemmed |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays |
title_sort |
Ecotoxicological assessment of perchlorate using in vitro and in vivo assays |
dc.subject.keywords.none.fl_str_mv |
Biological models Biota Ecotoxicology Effects Endocrine disruption Toxicity Alga Anthropogenic source Assay Assessment method Bacterium Biota Crustacean Earthworm Ecological modeling Ecotoxicology Endocrine disruptor Freshwater environment Perchlorate Pollution effect Algae Crustacea Daphnia magna Eisenia fetida Selenastrum capricornutum Vibrio fischeri Perchlorate Animal Animal model Bioassay Drug effect Ecotoxicology Environmental monitoring Human Oligochaeta Pollutant Procedures Species difference Toxicity Animals Biological Assay Ecotoxicology Environmental monitoring Environmental Pollutants Humans Models, Animal Oligochaeta Perchlorates Species Specificity |
topic |
Biological models Biota Ecotoxicology Effects Endocrine disruption Toxicity Alga Anthropogenic source Assay Assessment method Bacterium Biota Crustacean Earthworm Ecological modeling Ecotoxicology Endocrine disruptor Freshwater environment Perchlorate Pollution effect Algae Crustacea Daphnia magna Eisenia fetida Selenastrum capricornutum Vibrio fischeri Perchlorate Animal Animal model Bioassay Drug effect Ecotoxicology Environmental monitoring Human Oligochaeta Pollutant Procedures Species difference Toxicity Animals Biological Assay Ecotoxicology Environmental monitoring Environmental Pollutants Humans Models, Animal Oligochaeta Perchlorates Species Specificity |
description |
Perchlorate is an inorganic ion widespread in the environment, generated as a natural and anthropogenic pollutant, with known endocrine disruption properties in the thyroid gland. Nonetheless, there are few reports of its ecotoxicological impact on wildlife. The aim of this study was to evaluate the adverse effects of KClO4 exposure on different cell lines, HEK, N2a, and 3T3, as well as in ecological models such as Vibrio fischeri, Pseudokirchneriella subcapitata, Daphnia magna, and Eisenia fetida. Perchlorate exhibited similar toxicity against tested cell lines, with LC50 values of 19, 15, and 19 mM for HEK, N2a, and 3T3, respectively; whereas in V. fischeri, the toxicity, examined as bioluminescence reduction, was considerably lower (EC50 = 715 mM). The survival of the freshwater algae P. subcapitata was significatively impaired by perchlorate (LC50 = 72 mM), and its effect on the lethality in the crustacean D. magna was prominent (LC50 = 5 mM). For the earthworm E. fetida, the LC50 was 56 mM in soil. In this organism, perchlorate induced avoidance behavior, weight loss, and decreased egg production and hatchling, as well as morphological and histopathological effects, such as malformations, dwarfism, and necrosis. In conclusion, perchlorate toxicity varies according to the species, although E. fetida is a sensitive model to generate information regarding the toxicological impact of KClO4 on biota. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:33Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Environmental Science and Pollution Research; Vol. 25, Núm. 14; pp. 13697-13708 |
dc.identifier.issn.none.fl_str_mv |
09441344 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8882 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s11356-018-1565-6 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56674579200 57200990599 9736353600 |
identifier_str_mv |
Environmental Science and Pollution Research; Vol. 25, Núm. 14; pp. 13697-13708 09441344 10.1007/s11356-018-1565-6 Universidad Tecnológica de Bolívar Repositorio UTB 56674579200 57200990599 9736353600 |
url |
https://hdl.handle.net/20.500.12585/8882 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042767977&doi=10.1007%2fs11356-018-1565-6&partnerID=40&md5=5b305b162b9438486ee8f2659e4314ba |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8882/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021650463588352 |
spelling |
2020-03-26T16:32:33Z2020-03-26T16:32:33Z2018Environmental Science and Pollution Research; Vol. 25, Núm. 14; pp. 13697-1370809441344https://hdl.handle.net/20.500.12585/888210.1007/s11356-018-1565-6Universidad Tecnológica de BolívarRepositorio UTB56674579200572009905999736353600Perchlorate is an inorganic ion widespread in the environment, generated as a natural and anthropogenic pollutant, with known endocrine disruption properties in the thyroid gland. Nonetheless, there are few reports of its ecotoxicological impact on wildlife. The aim of this study was to evaluate the adverse effects of KClO4 exposure on different cell lines, HEK, N2a, and 3T3, as well as in ecological models such as Vibrio fischeri, Pseudokirchneriella subcapitata, Daphnia magna, and Eisenia fetida. Perchlorate exhibited similar toxicity against tested cell lines, with LC50 values of 19, 15, and 19 mM for HEK, N2a, and 3T3, respectively; whereas in V. fischeri, the toxicity, examined as bioluminescence reduction, was considerably lower (EC50 = 715 mM). The survival of the freshwater algae P. subcapitata was significatively impaired by perchlorate (LC50 = 72 mM), and its effect on the lethality in the crustacean D. magna was prominent (LC50 = 5 mM). For the earthworm E. fetida, the LC50 was 56 mM in soil. In this organism, perchlorate induced avoidance behavior, weight loss, and decreased egg production and hatchling, as well as morphological and histopathological effects, such as malformations, dwarfism, and necrosis. In conclusion, perchlorate toxicity varies according to the species, although E. fetida is a sensitive model to generate information regarding the toxicological impact of KClO4 on biota. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.perchlorate, 14797-73-0; Environmental Pollutants; perchlorate; PerchloratesRecurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85042767977&doi=10.1007%2fs11356-018-1565-6&partnerID=40&md5=5b305b162b9438486ee8f2659e4314baEcotoxicological assessment of perchlorate using in vitro and in vivo assaysinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Biological modelsBiotaEcotoxicologyEffectsEndocrine disruptionToxicityAlgaAnthropogenic sourceAssayAssessment methodBacteriumBiotaCrustaceanEarthwormEcological modelingEcotoxicologyEndocrine disruptorFreshwater environmentPerchloratePollution effectAlgaeCrustaceaDaphnia magnaEisenia fetidaSelenastrum capricornutumVibrio fischeriPerchlorateAnimalAnimal modelBioassayDrug effectEcotoxicologyEnvironmental monitoringHumanOligochaetaPollutantProceduresSpecies differenceToxicityAnimalsBiological AssayEcotoxicologyEnvironmental monitoringEnvironmental PollutantsHumansModels, AnimalOligochaetaPerchloratesSpecies SpecificityAcevedo Barrios, RosaSabater-Marco C.Olivero-Verbel J.Abbondanzi, F., Cachada, A., Campisi, T., Guerra, R., Raccagni, M., Iacondini, A., Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox® assay (2003) Chemosphere, 53 (8), pp. 889-897Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., Olivero-Verbel, J., Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia (2016) Toxicol Lett (259), p. S103Aruoja, V., (2011) Algae Pseudokircheriella subcapitata in environmental hazard evaluation of chemicals and synthetic nanoparticles, , http://hdl.handle.net/10492/154, PhD Thesis: Estonian University of Life ScienceCáceres, T., Megharaj, M., Naidu, R., Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp (2008) Sci Total Environ, 398 (1), pp. 53-59Cañas, J.E., Cheng, Q., Tian, K., Anderson, T.A., Optimization of operating conditions for the determination of perchlorate in biological samples using preconcentration/preelution ion chromatography (2006) J Chromatogr, 1103 (1), pp. 102-109Chen, H.X., Ding, M.H., Liu, Q., Peng, K.L., Change of iodine load and thyroid homeostasis induced by ammonium perchlorate in rats (2014) J Huazhong Univ Sci Technol (Med Sci), 34 (5), pp. 672-678Clewell, R.A., Merrill, E.A., Narayanan, L., Gearhart, J.M., Robinson, P.J., Evidence for competitive inhibition of iodide uptake by perchlorate and translocation of perchlorate into the thyroid (2004) Int J Toxicol, 23 (1), pp. 17-23Cotou, E., Papathanassiou, E., Tsangaris, C., Assessing the quality of marine coastal environments: comparison of scope for growth and Microtox® bioassay results of pollution gradient areas in eastern Mediterranean (Greece) (2002) Environ Pollut, 119 (2), pp. 141-149Czekanska, E.M., Assessment of cell proliferation with resazurin-based fluorescent dye (2011) Methods Mol Biol, 740, pp. 27-32Dahl, R., Drinking water: NAS reports on perchlorate safety, 2005 (2005) Environ Health Perspect, 113 (7), p. A449Dalzell, D., Alte, S., Aspichueta, E., De la Sota, A., Etxebarria, J., Gutierrez, M., Hoffmann, C., Christofi, N., A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge (2002) Chemosphere, 47 (5), pp. 535-545Domínguez, J., State-of-the-art and new perspectives on vermicomposting research (2004) Earthworm ecology, , CRC Press, Boca RatonDomínguez, J., Pérez-Losada, M., Eisenia fetida (Savigny, 1826) y Eisenia andrei Bouché, 1972 son dos especies diferentes de lombrices de tierra (2010) Acta Zool Mex, 26, pp. 321-331Domínguez, J., Velando, A., Ferreiro, A., Are Eisenia fetida (Savigny, 1826) and Eisenia andrei Bouché (1972) (Oligochaeta, Lumbricidae) different biological species? (2005) Pedobiologia, 49 (1), pp. 81-87Duan, Q., Wang, T., Zhang, N., Perera, V., Liang, X., Abeysekera, I.R., Yao, X., Propylthiouracil, perchlorate, and thyroid-stimulating hormone modulate high concentrations of iodide instigated mitochondrial superoxide production in the thyroids of metallothionein I/II knockout mice (2016) Endocrinol Metab (Seoul), 31 (1), pp. 174-184El-Alawi, Y.S., McConkey, B.J., George Dixon, D., Greenberg, B.M., Measurement of short- and long-term toxicity of polycyclic aromatic hydrocarbons using luminescent bacteria (2002) Ecotoxicol Environ Saf, 51 (1), pp. 12-21(2005) Perchlorate and Perchlorate Salts, , EPA, Environmental Protection Agency(2009) Revised Assessment Guidance for Perchlorate, , EPA, Environmental Protection AgencyPennsylvania Avenue, NW Washington (2002) Environmental Protection Agency Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. fifth ed. U.S. Environmental Protection Agency Office of Water (4303T)Finney, D.J., Probit analysis (2nd Ed) (1952) J Inst Actuaries, 78 (3), pp. 388-390Fraser, T.W.K., Khezri, A., Lewandowska-Sabat, A.M., Henry, T., Ropstad, E., Endocrine disruptors affect larval zebrafish behavior: testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers (2017) Aquat Toxicol, 193, pp. 128-135Fu, L., Huang, T., Wang, S., Wang, X., Su, L., Li, C., Zhao, Y., Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action (2017) Chemosphere, 168, pp. 217-222Gholamian, F., Sheikh-Mohseni, M.A., Salavati-Niasari, M., Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper (2011) Mater Sci Eng, C, 31 (8), pp. 1688-1691ST/SG/AC.10/30 (2007) United Nation, , www.osha.govGojanovich, A.D., Bustos, D.M., Uhart, M., Differential expression and accumulation of 14-3-3 paralogs in 3T3-L1 preadipocytes and differentiated cells (2016) Biochem Biophys Rep, 7, pp. 106-112Gupta, V.K., Singh, A.K., Singh, P., Upadhyay, A., Electrochemical determination of perchlorate ion by polymeric membrane and coated graphite electrodes based on zinc complexes of macrocyclic ligands (2014) Sens Actuators B Chem, 199, pp. 201-209Guzzella, L., Gronda, A., Colombo, L., Acute toxicity of organophosphorus insecticides to marine invertebrates (1997) Bull Environ Contam Toxicol, 59 (2), pp. 313-320Higgins, C.P., Paesani, Z.J., Abbott Chalew, T.E., Halden, R.U., Hundal, L.S., Persistence of triclocarban and triclosan in soils after land application of biosolids and bioaccumulation in Eisenia Foetida (2011) Environ Toxicol Chem, 30 (3), pp. 556-563Iannece, P., Motta, O., Tedesco, R., Carotenuto, M., Proto, A., Determination of perchlorate in bottled water from Italy (2013) Water, 5 (2), pp. 767-779Soil quality—avoidance test for determining the quality of soils and effects of chemicals on behaviour—part 1: test with earthworms (Eisenia fetida and Eisenia andrei) (2008) Genf: International Organization for StandardizationWater quality: determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera (1996) Crustacea), , Geneva, SwitzerlandKannan, K., Praamsma, M.L., Oldi, J.F., Kunisue, T., Sinha, R.K., Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India (2009) Chemosphere, 76 (1), pp. 22-26Kendall, R.J., Smith, P.N., Perchlorate ecotoxicology (2006) Soc Environ Toxicol ChemKoppikar, S.J., Choudhari, A.S., Suryavanshi, S.A., Kumari, S., Chattopadhyay, S., Kaul-Ghanekar, R., Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassiacauses apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential (2010) BMC Cancer, 10 (1), p. 210Lagarde, F., Beausoleil, C., Belcher, S.M., Belzunces, L.P., Emond, C., Guerbet, M., Rousselle, C., Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment (2015) Environ Health, 14Landrum, M., Canas, J.E., Coimbatore, G., Cobb, G.P., Jackson, W.A., Zhang, B., Anderson, T.A., Effects of perchlorate on earthworm (Eisenia fetida) survival and reproductive success (2006) Sci Total Environ, 363 (1), pp. 237-244Lappalainen, J., Juvonen, R., Nurmi, J., Karp, M., Automated color correction method for Vibrio fischeri toxicity test. Comparison of standard and kinetic assays (2001) Chemosphere, 45 (4), pp. 635-641Lee, P.Y., Chen, C.Y., Toxicity and quantitative structure–activity relationships of benzoic acids to Pseudokirchneriella subcapitata (2009) J Hazard Mater, 165 (1), pp. 156-161Liu, Q., Ding, M.H., Zhang, R., Chen, H.X., Zhou, X.X., Xu, H.F., Chen, H., Peng, K.L., Study on mechanism of thyroid cytotoxicity of ammonium perchlorate (2013) Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi, 31 (6), pp. 418-421Loibner, A.P., Szolar, O.H., Braun, R., Hirmann, D., Toxicity testing of 16 priority polycyclic aromatic hydrocarbons using Lumistox® (2004) Environ Toxicol Chem, 23 (3), pp. 557-564Lumen, A., George, N.I., Evaluation of the risk of perchlorate exposure in a population of late-gestation pregnant women in the United States: application of probabilistic biologically-based dose response modeling (2017) Toxicol Appl Pharmacol, 322, pp. 9-14Lumen, A., Mattie, D.R., Fisher, J.W., Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model (2013) Toxicol Sci, 133 (2), pp. 320-341Maffini, M.V., Trasande, L., Neltner, T.G., Perchlorate and diet: human exposures, risks, and mitigation strategies (2016) Curr Environ Health Rep, 3 (2), pp. 107-117Mariscal, A., Peinado, M.T., Carnero-Varo, M., Fernández-Crehuet, J.N., Influence of organic solvents on the sensitivity of a bioluminescence toxicity test with Vibrio harveyi (2003) Chemosphere, 50 (3), pp. 349-354Martín, A., Serrano, S., Santos, A., Marquina, D., Vázquez, C., Bioluminiscencia bacteriana (2010) Reduca (Bio), 3 (5), pp. 75-86(2004) Test no. 202: daphnia sp. acute immobilisation test. OECD guidelines for the testing of chemicals, , OECD Publishing, Paris(2011) Test no. 201: freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals, Section2, , OECD Publishing, ParisOnorati, F., Mecozzi, M., Effects of two diluents in the Microtox® toxicity bioassay with marine sediments (2004) Chemosphere, 54 (5), pp. 679-687Orias, F., Simon, L., Perrodin, Y., Experimental assessment of the bioconcentration of 15 N-tamoxifen in Pseudokirchneriella subcapitata (2015) Chemosphere, 122, pp. 251-256Parvez, S., Venkataraman, C., Mukherji, S., A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals (2006) Environ Int, 32 (2), pp. 265-268Persoone, G., Janssen, C., De Coen, W., New microbiotests for routine toxicity screening and biomonitoring (2000) kluwer Academic/Plenum PublishersPetersen, A.M., Dillon, D., Bernhardt, R.R., Torunsky, R., Postlethwait, J.H., von Hippel, F.A., Loren Buck, C., Cresko, W.A., Perchlorate disrupts embryonic androgen synthesis and reproductive development in threespine stickleback without changing whole-body levels of thyroid hormone (2015) Gen Comp Endocrinol, 210, pp. 130-144Provost, P., Interpretation and applicability of microRNA data to the context of Alzheimer’s and age-related diseases (2010) Aging (Albany NY), 2 (3), pp. 166-169Qiu, X.-Y., Li, K., Li, X.-Q., Li, X.-T., The inhibitory effects of nifedipine on outward voltage-gated potassium currents in mouse neuroblastoma N2A cells (2016) Pharmacol Rep, 68 (3), pp. 631-637Ramos, C., De la Torre, A., Tarazona, J., Munoz, M., Desarrollo de un ensayo de inhibición de Chlorella vulgaris utilizando un test en microplacas (1996) Rev Toxicol, 13, pp. 97-100Reshma, V.G., Mohanan, P.V., Cellular interactions of zinc oxide nanoparticles with human embryonic kidney (HEK 293) cells (2017) Colloids Surf B Biointerfaces, 157, pp. 182-190Rico, A., Sabater, C., Castillo, M.-Á., Lethal and sub-lethal effects of five pesticides used in rice farming on the earthworm Eisenia fetida (2016) Ecotoxicol Environ Saf, 127, pp. 222-229Rigol, A., Latorre, A., Lacorte, S., Barceló, D., Bioluminescence inhibition assays for toxicity screening of wood extractives and biocides in paper mill process waters (2004) Environ Toxicol Chem, 23 (2), pp. 339-347Rizzo, L., Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment (2011) Water Res, 45 (15), pp. 4311-4340Ronald, E., Donald, E., Earthworms for ecology and profit: scientific earthworm farming (1977) Bookworm Publishing CompanySánchez, O.E.A., Evaluación de riesgos ambientales del uso de plaguicidas empleados en el cultivo del arroz en el Parque Natural de La Albufera de Valencia (2008) Universitat Politècnica de ValènciaSaxena, P., Gupta, S., Murthy, R., Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida—a possible mechanism (2014) Ecotoxicol Environ Saf, 100, pp. 218-225Schmidt, F., Schnurr, S., Wolf, R., Braunbeck, T., Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish (2012) Aquat Toxicol, 109, pp. 47-58(2015) Perchlorate exposure is associated with oxidative stress and indicators of serum iron homeostasis among NHANES 2005-2008 subjects., , https://doi.org/10.4137/BMI.S20089, Schreinemachers DM, Ghio AJ, Sobus JR, Williams MA Biomark Insights 10:9–19. eCollection 2015Serrano-Nascimento, C., Calil-Silveira, J., Dalbosco, R., Zorn, T.T., Nunes, M.T., Evaluation of hypothalamus-pituitary-thyroid axis function by chronic perchlorate exposure in male rats (2018) Environ Toxicol, 33 (2), pp. 209-219Sindi, R.A., Harris, W., Arnott, G., Flaskos, J., Lloyd Mills, C., Hargreaves, A.J., Chlorpyrifos- and chlorpyrifos oxon-induced neurite retraction in pre-differentiated N2a cells is associated with transient hyperphosphorylation of neurofilament heavy chain and ERK 1/2 (2016) Toxicol Appl Pharmacol, 308, pp. 20-31Smith, P.N., Yu, L., McMurry, S.T., Anderson, T.A., Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA (2004) Environ Pollut, 132 (1), pp. 121-127Solecki, R., Kortenkamp, A., Bergman, Å., Chahoud, I., Degen, G.H., Dietrich, D., Greim, H., Boobis, A.R., Scientific principles for the identification of endocrine-disrupting chemicals: a consensus statement (2017) Arch Toxicol, 91 (2), pp. 1001-1006Srinivasan, A., Viraraghavan, T., Perchlorate: health effects and technologies for its removal from water resources (2009) Int J Environ Res Public Health, 6 (4), pp. 1418-1442Tatarazako, N., Oda, S., The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans (2007) Ecotoxicology, 16 (1), pp. 197-203Thrash, J.C., Van Trump, J.I., Weber, K.A., Miller, E., Achenbach, L.A., Coates, J.D., Electrochemical stimulation of microbial perchlorate reduction (2007) Environ Sci Technol, 41 (5), pp. 1740-1746(2008) U.S, , Food and Drug Administration, US Food and Drug Administration’s Total DietCalidad del agua (2012) Ensayo de inhibición del crecimiento de algas de agua dulce con algas verdes unicelularesVigliotta, G., Motta, O., Guarino, F., Iannece, P., Proto, A., Assessment of perchlorate-reducing bacteria in a highly polluted river (2010) Int J Hyg Environ Health, 213 (6), pp. 437-443Wang, C., Yediler, A., Lienert, D., Wang, Z., Kettrup, A., Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri (2002) Chemosphere, 46 (2), pp. 339-344Wang, C., Lippincott, L., Meng, X., Kinetics of biological perchlorate reduction and pH effect (2008) J Hazard Mater, 153 (1-2), pp. 663-669Wang, X., Jiang, L., Ge, L., Chen, M., Yang, G., Ji, F., Zhong, L., Liu, X., Oxidative DNA damage induced by di-(2-ethylhexyl) phthalate in HEK-293 cell line (2015) Environ Toxicol Pharmacol, 39 (3), pp. 1099-1106Williams, M., Reddy, G., Quinn, M., Johnson, M., Wildlife toxicity assessment for chemicals of military. ISBN: 9780128004807 (2015) Elsevier, p. 722Wolff, J., Perchlorate and the thyroid gland (1998) Pharmacol Rev, 50 (1), pp. 89-105Ye, L., You, H., Yao, J., Su, H., Water treatment technologies for perchlorate: a review (2012) Desalination, 298, pp. 1-12Estudi de la toxicitat dels herbicides bensulfuron metil, propanil i cyhalofop butil en quatre espècies d’algues (2006) Avaluació dels riscos ambientals deguts a l’ús d’aquests herbicides en zones humides mediterràniesZhao, X., Zhou, P., Chen, X., Li, X., Ding, L., Perchlorate-induced oxidative stress in isolated liver mitochondria (2014) Ecotoxicology, 23 (10), pp. 1846-1853http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8882/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8882oai:repositorio.utb.edu.co:20.500.12585/88822023-04-24 08:24:21.884Repositorio Institucional UTBrepositorioutb@utb.edu.co |