An omnidirectional wrappable compact patch antenna for wireless endoscope applications

An inductively loaded compact patch antenna for a radiation frequency of 433 MHz is designed taking into consideration a human-body model and fabricated on a flexible liquid crystalline polymer (LCP) substrate, which is subsequently wrapped into a cylindrical shape to achieve a monopole-like omnidir...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9089
Acceso en línea:
https://hdl.handle.net/20.500.12585/9089
Palabra clave:
Electromagnetic interference (EMI) protection
Human-body phantom
Omnidirectional pattern
Patch antenna
Wireless endoscope
Wrappable antenna
Antenna size
Capsule endoscopes
Compact patch antenna
Cylindrical cavities
Cylindrical shapes
Electromagnetic interference protections
Electronic component
Equivalent circuit model
Ground planes
Human body models
Human-body phantom
Length reduction
Omnidirectional pattern
Omnidirectional radiation pattern
Omnidirectionality
Radiation frequencies
Space coverage
Wireless endoscope
Electromagnetic pulse
Electromagnetic wave interference
Endoscopy
Microstrip antennas
Signal interference
Tracking (position)
Omnidirectional antennas
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_57073148ae1e18b9f4d6f46741d93db0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9089
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv An omnidirectional wrappable compact patch antenna for wireless endoscope applications
title An omnidirectional wrappable compact patch antenna for wireless endoscope applications
spellingShingle An omnidirectional wrappable compact patch antenna for wireless endoscope applications
Electromagnetic interference (EMI) protection
Human-body phantom
Omnidirectional pattern
Patch antenna
Wireless endoscope
Wrappable antenna
Antenna size
Capsule endoscopes
Compact patch antenna
Cylindrical cavities
Cylindrical shapes
Electromagnetic interference protections
Electronic component
Equivalent circuit model
Ground planes
Human body models
Human-body phantom
Length reduction
Omnidirectional pattern
Omnidirectional radiation pattern
Omnidirectionality
Radiation frequencies
Space coverage
Wireless endoscope
Electromagnetic pulse
Electromagnetic wave interference
Endoscopy
Microstrip antennas
Signal interference
Tracking (position)
Omnidirectional antennas
title_short An omnidirectional wrappable compact patch antenna for wireless endoscope applications
title_full An omnidirectional wrappable compact patch antenna for wireless endoscope applications
title_fullStr An omnidirectional wrappable compact patch antenna for wireless endoscope applications
title_full_unstemmed An omnidirectional wrappable compact patch antenna for wireless endoscope applications
title_sort An omnidirectional wrappable compact patch antenna for wireless endoscope applications
dc.subject.keywords.none.fl_str_mv Electromagnetic interference (EMI) protection
Human-body phantom
Omnidirectional pattern
Patch antenna
Wireless endoscope
Wrappable antenna
Antenna size
Capsule endoscopes
Compact patch antenna
Cylindrical cavities
Cylindrical shapes
Electromagnetic interference protections
Electronic component
Equivalent circuit model
Ground planes
Human body models
Human-body phantom
Length reduction
Omnidirectional pattern
Omnidirectional radiation pattern
Omnidirectionality
Radiation frequencies
Space coverage
Wireless endoscope
Electromagnetic pulse
Electromagnetic wave interference
Endoscopy
Microstrip antennas
Signal interference
Tracking (position)
Omnidirectional antennas
topic Electromagnetic interference (EMI) protection
Human-body phantom
Omnidirectional pattern
Patch antenna
Wireless endoscope
Wrappable antenna
Antenna size
Capsule endoscopes
Compact patch antenna
Cylindrical cavities
Cylindrical shapes
Electromagnetic interference protections
Electronic component
Equivalent circuit model
Ground planes
Human body models
Human-body phantom
Length reduction
Omnidirectional pattern
Omnidirectional radiation pattern
Omnidirectionality
Radiation frequencies
Space coverage
Wireless endoscope
Electromagnetic pulse
Electromagnetic wave interference
Endoscopy
Microstrip antennas
Signal interference
Tracking (position)
Omnidirectional antennas
description An inductively loaded compact patch antenna for a radiation frequency of 433 MHz is designed taking into consideration a human-body model and fabricated on a flexible liquid crystalline polymer (LCP) substrate, which is subsequently wrapped into a cylindrical shape to achieve a monopole-like omnidirectional radiation pattern for wireless endoscope applications. The wrapped patch antenna has a stretched length of 31 mm (0.07λ), and its cylindrical form has a diameter of 10 mm and a width of 18.5 mm, whose dimensions are designed to be comparable to those of a commercially available capsule endoscope. Compared to a traditional patch antenna with the same radiation frequency, an 86% length reduction is achieved. Omnidirectionality is desired to increase the space coverage in communication between the randomly moving capsule inside and the receiver outside the body. The enclosed cylindrical cavity, surrounded by the ground plane of the patch, provides an electromagnetic interference (EMI) protected room that is useful for the placement of other electronic components. Multiple inductive notches on a patch designed for antenna size reduction are described by an equivalent circuit model. Human-body phantom solution is used for antenna characterization. The antenna, located at the outermost layer, serves not only as a good radiating unit, but also as the EMI protecting, mechanically supporting, packaging layer of the endoscope system. © 2002-2011 IEEE.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:55Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:55Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Antennas and Wireless Propagation Letters; Vol. 11, pp. 1667-1670
dc.identifier.issn.none.fl_str_mv 15361225
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9089
dc.identifier.doi.none.fl_str_mv 10.1109/LAWP.2013.2238600
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 37101227200
55581304400
57213078924
36698427600
7402126778
identifier_str_mv IEEE Antennas and Wireless Propagation Letters; Vol. 11, pp. 1667-1670
15361225
10.1109/LAWP.2013.2238600
Universidad Tecnológica de Bolívar
Repositorio UTB
37101227200
55581304400
57213078924
36698427600
7402126778
url https://hdl.handle.net/20.500.12585/9089
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873357040&doi=10.1109%2fLAWP.2013.2238600&partnerID=40&md5=0364c61c61d6a599964057bfd25a0d41
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9089/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021724425945088
spelling 2020-03-26T16:32:55Z2020-03-26T16:32:55Z2012IEEE Antennas and Wireless Propagation Letters; Vol. 11, pp. 1667-167015361225https://hdl.handle.net/20.500.12585/908910.1109/LAWP.2013.2238600Universidad Tecnológica de BolívarRepositorio UTB371012272005558130440057213078924366984276007402126778An inductively loaded compact patch antenna for a radiation frequency of 433 MHz is designed taking into consideration a human-body model and fabricated on a flexible liquid crystalline polymer (LCP) substrate, which is subsequently wrapped into a cylindrical shape to achieve a monopole-like omnidirectional radiation pattern for wireless endoscope applications. The wrapped patch antenna has a stretched length of 31 mm (0.07λ), and its cylindrical form has a diameter of 10 mm and a width of 18.5 mm, whose dimensions are designed to be comparable to those of a commercially available capsule endoscope. Compared to a traditional patch antenna with the same radiation frequency, an 86% length reduction is achieved. Omnidirectionality is desired to increase the space coverage in communication between the randomly moving capsule inside and the receiver outside the body. The enclosed cylindrical cavity, surrounded by the ground plane of the patch, provides an electromagnetic interference (EMI) protected room that is useful for the placement of other electronic components. Multiple inductive notches on a patch designed for antenna size reduction are described by an equivalent circuit model. Human-body phantom solution is used for antenna characterization. The antenna, located at the outermost layer, serves not only as a good radiating unit, but also as the EMI protecting, mechanically supporting, packaging layer of the endoscope system. © 2002-2011 IEEE.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84873357040&doi=10.1109%2fLAWP.2013.2238600&partnerID=40&md5=0364c61c61d6a599964057bfd25a0d41An omnidirectional wrappable compact patch antenna for wireless endoscope applicationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Electromagnetic interference (EMI) protectionHuman-body phantomOmnidirectional patternPatch antennaWireless endoscopeWrappable antennaAntenna sizeCapsule endoscopesCompact patch antennaCylindrical cavitiesCylindrical shapesElectromagnetic interference protectionsElectronic componentEquivalent circuit modelGround planesHuman body modelsHuman-body phantomLength reductionOmnidirectional patternOmnidirectional radiation patternOmnidirectionalityRadiation frequenciesSpace coverageWireless endoscopeElectromagnetic pulseElectromagnetic wave interferenceEndoscopyMicrostrip antennasSignal interferenceTracking (position)Omnidirectional antennasCheng X.Wu J.Blank R.Senior D.E.Yoon, Y.K.Kudo, S., Kashida, H., Nakajima, T., Tamura, S., Nakajo, K., Endoscopic diagnosis and treatment of early colorectal cancer (1997) World J. Surgery, 21 (7), pp. 694-701Bozdech, J.M., Endoscopic diagnosis of colonic endometriosis (1992) Gastrointestinal Endoscopy, 38, pp. 568-570Koukourakis, M.I., Giatromanolaki, A., Skarlatos, J., Corti, L., Blandamura, S., Piazza, M., Gatter, K.C., Harris, A.L., Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy (2001) Cancer Res., 61, pp. 1830-1832. , MarShih, H.Y., Chang, C., 68.4 400MHz intrabody communication receiver front-end for biomedical applications (2012) Electron. Lett., 48 (3), pp. 143-144. , Feb(2012) Medical Body Area Networks First Report and Order, , http://transition.fcc.gov/Daily_Releases/Daily_Business/2012/db0619/ FCC-12-54A1.pdf, Federal Communications Commission, Washington DC USA, [Online]Cheng, X., Senior, D., Kim, C., Yoon, Y., A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications (2011) IEEE Antennas Wireless Propag. Lett., 10, pp. 1532-1535Shirvante, V., Todeschini, F., Cheng, X., Yoon, Y.-K., Compact spiral antennas for MICS band wireless endoscope toward pediatric applications (2010) Proc. IEEE APURSI, pp. 1-4. , Jul. 11-17Lee, S.H., Lee, J., Yoon, Y.J., Park, S., Cheon, C., Kim, K., Nam, S., A wideband spiral antenna for ingestible capsule endoscope systems: Experimental results in a human phantom and a pig (2011) IEEE Trans. Biomed. Eng., 58 (6), pp. 1734-1741. , JunLee, S.H., Yoon, Y.J., Fat arm spiral antenna for wideband capsule endoscope systems (2010) Proc. IEEE RWS, Jan., pp. 579-582Yun, S., Kim, K., Nam, S., Outer-wall loop antenna for ultrawideband capsule endoscope system (2010) IEEE Antennas Wireless Propag. Lett., 9, pp. 1135-1138Chen, Z.N., (2007) Antennas for Portable Devices, , Chichester U.K.: WileyHoefer, W.J.R., Equivalent series inductivity of a narrow transverse slit in microstrip (1977) IEEE Trans. Microw. Theory Tech., 25 (10), pp. 822-824. , OctReed, S., Desclos, L., Terret, C., Toutain, S., Patch antenna size reduction by means of inductive slots (2001) Microw. Opt. Technol. Lett., 29 (2), pp. 79-81. , AprDesclos, L., Mahe, Y., Reed, S., Poilasne, G., Toutain, S., Patch antenna size reduction by combining inductive loading and shortpoints technique (2001) Microw. Opt. Technol. Lett., 20 (6), pp. 385-386. , SepLaingw. C Lai, M.C., Yen, Y.M., Kuo, Y.L., A capacitor-loaded broadband circular patch antenna (2001) Proc. IEEE Antennas Propag. Soc. Int. Symp., 3, pp. 302-304(1997) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, , http://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/ bulletins/oet65/oet65b.pdf, Federal Communications Commission Office Of Engineering & Technology Washington DC USA, [Online]http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9089/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9089oai:repositorio.utb.edu.co:20.500.12585/90892023-04-24 08:51:30.465Repositorio Institucional UTBrepositorioutb@utb.edu.co