An omnidirectional wrappable compact patch antenna for wireless endoscope applications
An inductively loaded compact patch antenna for a radiation frequency of 433 MHz is designed taking into consideration a human-body model and fabricated on a flexible liquid crystalline polymer (LCP) substrate, which is subsequently wrapped into a cylindrical shape to achieve a monopole-like omnidir...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9089
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9089
- Palabra clave:
- Electromagnetic interference (EMI) protection
Human-body phantom
Omnidirectional pattern
Patch antenna
Wireless endoscope
Wrappable antenna
Antenna size
Capsule endoscopes
Compact patch antenna
Cylindrical cavities
Cylindrical shapes
Electromagnetic interference protections
Electronic component
Equivalent circuit model
Ground planes
Human body models
Human-body phantom
Length reduction
Omnidirectional pattern
Omnidirectional radiation pattern
Omnidirectionality
Radiation frequencies
Space coverage
Wireless endoscope
Electromagnetic pulse
Electromagnetic wave interference
Endoscopy
Microstrip antennas
Signal interference
Tracking (position)
Omnidirectional antennas
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_57073148ae1e18b9f4d6f46741d93db0 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9089 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications |
title |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications |
spellingShingle |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications Electromagnetic interference (EMI) protection Human-body phantom Omnidirectional pattern Patch antenna Wireless endoscope Wrappable antenna Antenna size Capsule endoscopes Compact patch antenna Cylindrical cavities Cylindrical shapes Electromagnetic interference protections Electronic component Equivalent circuit model Ground planes Human body models Human-body phantom Length reduction Omnidirectional pattern Omnidirectional radiation pattern Omnidirectionality Radiation frequencies Space coverage Wireless endoscope Electromagnetic pulse Electromagnetic wave interference Endoscopy Microstrip antennas Signal interference Tracking (position) Omnidirectional antennas |
title_short |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications |
title_full |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications |
title_fullStr |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications |
title_full_unstemmed |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications |
title_sort |
An omnidirectional wrappable compact patch antenna for wireless endoscope applications |
dc.subject.keywords.none.fl_str_mv |
Electromagnetic interference (EMI) protection Human-body phantom Omnidirectional pattern Patch antenna Wireless endoscope Wrappable antenna Antenna size Capsule endoscopes Compact patch antenna Cylindrical cavities Cylindrical shapes Electromagnetic interference protections Electronic component Equivalent circuit model Ground planes Human body models Human-body phantom Length reduction Omnidirectional pattern Omnidirectional radiation pattern Omnidirectionality Radiation frequencies Space coverage Wireless endoscope Electromagnetic pulse Electromagnetic wave interference Endoscopy Microstrip antennas Signal interference Tracking (position) Omnidirectional antennas |
topic |
Electromagnetic interference (EMI) protection Human-body phantom Omnidirectional pattern Patch antenna Wireless endoscope Wrappable antenna Antenna size Capsule endoscopes Compact patch antenna Cylindrical cavities Cylindrical shapes Electromagnetic interference protections Electronic component Equivalent circuit model Ground planes Human body models Human-body phantom Length reduction Omnidirectional pattern Omnidirectional radiation pattern Omnidirectionality Radiation frequencies Space coverage Wireless endoscope Electromagnetic pulse Electromagnetic wave interference Endoscopy Microstrip antennas Signal interference Tracking (position) Omnidirectional antennas |
description |
An inductively loaded compact patch antenna for a radiation frequency of 433 MHz is designed taking into consideration a human-body model and fabricated on a flexible liquid crystalline polymer (LCP) substrate, which is subsequently wrapped into a cylindrical shape to achieve a monopole-like omnidirectional radiation pattern for wireless endoscope applications. The wrapped patch antenna has a stretched length of 31 mm (0.07λ), and its cylindrical form has a diameter of 10 mm and a width of 18.5 mm, whose dimensions are designed to be comparable to those of a commercially available capsule endoscope. Compared to a traditional patch antenna with the same radiation frequency, an 86% length reduction is achieved. Omnidirectionality is desired to increase the space coverage in communication between the randomly moving capsule inside and the receiver outside the body. The enclosed cylindrical cavity, surrounded by the ground plane of the patch, provides an electromagnetic interference (EMI) protected room that is useful for the placement of other electronic components. Multiple inductive notches on a patch designed for antenna size reduction are described by an equivalent circuit model. Human-body phantom solution is used for antenna characterization. The antenna, located at the outermost layer, serves not only as a good radiating unit, but also as the EMI protecting, mechanically supporting, packaging layer of the endoscope system. © 2002-2011 IEEE. |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:55Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:55Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
IEEE Antennas and Wireless Propagation Letters; Vol. 11, pp. 1667-1670 |
dc.identifier.issn.none.fl_str_mv |
15361225 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9089 |
dc.identifier.doi.none.fl_str_mv |
10.1109/LAWP.2013.2238600 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
37101227200 55581304400 57213078924 36698427600 7402126778 |
identifier_str_mv |
IEEE Antennas and Wireless Propagation Letters; Vol. 11, pp. 1667-1670 15361225 10.1109/LAWP.2013.2238600 Universidad Tecnológica de Bolívar Repositorio UTB 37101227200 55581304400 57213078924 36698427600 7402126778 |
url |
https://hdl.handle.net/20.500.12585/9089 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873357040&doi=10.1109%2fLAWP.2013.2238600&partnerID=40&md5=0364c61c61d6a599964057bfd25a0d41 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9089/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021724425945088 |
spelling |
2020-03-26T16:32:55Z2020-03-26T16:32:55Z2012IEEE Antennas and Wireless Propagation Letters; Vol. 11, pp. 1667-167015361225https://hdl.handle.net/20.500.12585/908910.1109/LAWP.2013.2238600Universidad Tecnológica de BolívarRepositorio UTB371012272005558130440057213078924366984276007402126778An inductively loaded compact patch antenna for a radiation frequency of 433 MHz is designed taking into consideration a human-body model and fabricated on a flexible liquid crystalline polymer (LCP) substrate, which is subsequently wrapped into a cylindrical shape to achieve a monopole-like omnidirectional radiation pattern for wireless endoscope applications. The wrapped patch antenna has a stretched length of 31 mm (0.07λ), and its cylindrical form has a diameter of 10 mm and a width of 18.5 mm, whose dimensions are designed to be comparable to those of a commercially available capsule endoscope. Compared to a traditional patch antenna with the same radiation frequency, an 86% length reduction is achieved. Omnidirectionality is desired to increase the space coverage in communication between the randomly moving capsule inside and the receiver outside the body. The enclosed cylindrical cavity, surrounded by the ground plane of the patch, provides an electromagnetic interference (EMI) protected room that is useful for the placement of other electronic components. Multiple inductive notches on a patch designed for antenna size reduction are described by an equivalent circuit model. Human-body phantom solution is used for antenna characterization. The antenna, located at the outermost layer, serves not only as a good radiating unit, but also as the EMI protecting, mechanically supporting, packaging layer of the endoscope system. © 2002-2011 IEEE.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84873357040&doi=10.1109%2fLAWP.2013.2238600&partnerID=40&md5=0364c61c61d6a599964057bfd25a0d41An omnidirectional wrappable compact patch antenna for wireless endoscope applicationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Electromagnetic interference (EMI) protectionHuman-body phantomOmnidirectional patternPatch antennaWireless endoscopeWrappable antennaAntenna sizeCapsule endoscopesCompact patch antennaCylindrical cavitiesCylindrical shapesElectromagnetic interference protectionsElectronic componentEquivalent circuit modelGround planesHuman body modelsHuman-body phantomLength reductionOmnidirectional patternOmnidirectional radiation patternOmnidirectionalityRadiation frequenciesSpace coverageWireless endoscopeElectromagnetic pulseElectromagnetic wave interferenceEndoscopyMicrostrip antennasSignal interferenceTracking (position)Omnidirectional antennasCheng X.Wu J.Blank R.Senior D.E.Yoon, Y.K.Kudo, S., Kashida, H., Nakajima, T., Tamura, S., Nakajo, K., Endoscopic diagnosis and treatment of early colorectal cancer (1997) World J. Surgery, 21 (7), pp. 694-701Bozdech, J.M., Endoscopic diagnosis of colonic endometriosis (1992) Gastrointestinal Endoscopy, 38, pp. 568-570Koukourakis, M.I., Giatromanolaki, A., Skarlatos, J., Corti, L., Blandamura, S., Piazza, M., Gatter, K.C., Harris, A.L., Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy (2001) Cancer Res., 61, pp. 1830-1832. , MarShih, H.Y., Chang, C., 68.4 400MHz intrabody communication receiver front-end for biomedical applications (2012) Electron. Lett., 48 (3), pp. 143-144. , Feb(2012) Medical Body Area Networks First Report and Order, , http://transition.fcc.gov/Daily_Releases/Daily_Business/2012/db0619/ FCC-12-54A1.pdf, Federal Communications Commission, Washington DC USA, [Online]Cheng, X., Senior, D., Kim, C., Yoon, Y., A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications (2011) IEEE Antennas Wireless Propag. Lett., 10, pp. 1532-1535Shirvante, V., Todeschini, F., Cheng, X., Yoon, Y.-K., Compact spiral antennas for MICS band wireless endoscope toward pediatric applications (2010) Proc. IEEE APURSI, pp. 1-4. , Jul. 11-17Lee, S.H., Lee, J., Yoon, Y.J., Park, S., Cheon, C., Kim, K., Nam, S., A wideband spiral antenna for ingestible capsule endoscope systems: Experimental results in a human phantom and a pig (2011) IEEE Trans. Biomed. Eng., 58 (6), pp. 1734-1741. , JunLee, S.H., Yoon, Y.J., Fat arm spiral antenna for wideband capsule endoscope systems (2010) Proc. IEEE RWS, Jan., pp. 579-582Yun, S., Kim, K., Nam, S., Outer-wall loop antenna for ultrawideband capsule endoscope system (2010) IEEE Antennas Wireless Propag. Lett., 9, pp. 1135-1138Chen, Z.N., (2007) Antennas for Portable Devices, , Chichester U.K.: WileyHoefer, W.J.R., Equivalent series inductivity of a narrow transverse slit in microstrip (1977) IEEE Trans. Microw. Theory Tech., 25 (10), pp. 822-824. , OctReed, S., Desclos, L., Terret, C., Toutain, S., Patch antenna size reduction by means of inductive slots (2001) Microw. Opt. Technol. Lett., 29 (2), pp. 79-81. , AprDesclos, L., Mahe, Y., Reed, S., Poilasne, G., Toutain, S., Patch antenna size reduction by combining inductive loading and shortpoints technique (2001) Microw. Opt. Technol. Lett., 20 (6), pp. 385-386. , SepLaingw. C Lai, M.C., Yen, Y.M., Kuo, Y.L., A capacitor-loaded broadband circular patch antenna (2001) Proc. IEEE Antennas Propag. Soc. Int. Symp., 3, pp. 302-304(1997) Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, , http://transition.fcc.gov/Bureaus/Engineering_Technology/Documents/ bulletins/oet65/oet65b.pdf, Federal Communications Commission Office Of Engineering & Technology Washington DC USA, [Online]http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9089/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9089oai:repositorio.utb.edu.co:20.500.12585/90892023-04-24 08:51:30.465Repositorio Institucional UTBrepositorioutb@utb.edu.co |