Differential diagnosis of dengue and chikungunya in colombian children using machine learning

Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8921
Acceso en línea:
https://hdl.handle.net/20.500.12585/8921
Palabra clave:
CART
Chikungunya
Decision tree
Dengue
Logistic regression
Support vector machine
Artificial intelligence
Decision trees
Learning algorithms
Pediatrics
Regression analysis
Statistical tests
Support vector machines
CART
Chikungunya
Decision tree classifiers
Dengue
Logistic Regression modeling
Logistic regressions
Receiver operating characteristics
Stratified random sampling
Diagnosis
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_56e39194e4088bf7fd507afa50a7f368
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8921
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Differential diagnosis of dengue and chikungunya in colombian children using machine learning
title Differential diagnosis of dengue and chikungunya in colombian children using machine learning
spellingShingle Differential diagnosis of dengue and chikungunya in colombian children using machine learning
CART
Chikungunya
Decision tree
Dengue
Logistic regression
Support vector machine
Artificial intelligence
Decision trees
Learning algorithms
Pediatrics
Regression analysis
Statistical tests
Support vector machines
CART
Chikungunya
Decision tree classifiers
Dengue
Logistic Regression modeling
Logistic regressions
Receiver operating characteristics
Stratified random sampling
Diagnosis
title_short Differential diagnosis of dengue and chikungunya in colombian children using machine learning
title_full Differential diagnosis of dengue and chikungunya in colombian children using machine learning
title_fullStr Differential diagnosis of dengue and chikungunya in colombian children using machine learning
title_full_unstemmed Differential diagnosis of dengue and chikungunya in colombian children using machine learning
title_sort Differential diagnosis of dengue and chikungunya in colombian children using machine learning
dc.contributor.editor.none.fl_str_mv Ferme E.
Simari G.R.
Gutierrez Segura F.
Rodriguez Melquiades J.A.
dc.subject.keywords.none.fl_str_mv CART
Chikungunya
Decision tree
Dengue
Logistic regression
Support vector machine
Artificial intelligence
Decision trees
Learning algorithms
Pediatrics
Regression analysis
Statistical tests
Support vector machines
CART
Chikungunya
Decision tree classifiers
Dengue
Logistic Regression modeling
Logistic regressions
Receiver operating characteristics
Stratified random sampling
Diagnosis
topic CART
Chikungunya
Decision tree
Dengue
Logistic regression
Support vector machine
Artificial intelligence
Decision trees
Learning algorithms
Pediatrics
Regression analysis
Statistical tests
Support vector machines
CART
Chikungunya
Decision tree classifiers
Dengue
Logistic Regression modeling
Logistic regressions
Receiver operating characteristics
Stratified random sampling
Diagnosis
description Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis. © Springer Nature Switzerland AG 2018.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:36Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:36Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192
dc.identifier.isbn.none.fl_str_mv 9783030039271
dc.identifier.issn.none.fl_str_mv 03029743
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8921
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-03928-8_15
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 55782426500
35769665400
56375235000
7401653270
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192
9783030039271
03029743
10.1007/978-3-030-03928-8_15
Universidad Tecnológica de Bolívar
Repositorio UTB
55782426500
35769665400
56375235000
7401653270
url https://hdl.handle.net/20.500.12585/8921
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 13 November 2018 through 16 November 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057089239&doi=10.1007%2f978-3-030-03928-8_15&partnerID=40&md5=eb0deb2a1d840b5ff71ebabd700ffa29
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 16th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8921/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021553300439040
spelling Ferme E.Simari G.R.Gutierrez Segura F.Rodriguez Melquiades J.A.Caicedo-Torres W.Paternina-Caicedo Á.Pinzón-Redondo H.Gutiérrez J.2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192978303003927103029743https://hdl.handle.net/20.500.12585/892110.1007/978-3-030-03928-8_15Universidad Tecnológica de BolívarRepositorio UTB5578242650035769665400563752350007401653270Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis. © Springer Nature Switzerland AG 2018.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057089239&doi=10.1007%2f978-3-030-03928-8_15&partnerID=40&md5=eb0deb2a1d840b5ff71ebabd700ffa2916th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2018Differential diagnosis of dengue and chikungunya in colombian children using machine learninginfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCARTChikungunyaDecision treeDengueLogistic regressionSupport vector machineArtificial intelligenceDecision treesLearning algorithmsPediatricsRegression analysisStatistical testsSupport vector machinesCARTChikungunyaDecision tree classifiersDengueLogistic Regression modelingLogistic regressionsReceiver operating characteristicsStratified random samplingDiagnosis13 November 2018 through 16 November 2018Bhatt, S., The global distribution and burden of dengue (2013) Nature, 496 (7446), pp. 504-507. , https://doi.org/10.1038/nature12060,http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651993/Breiman, L., Friedman, J., Olshen, R., Stone, C., (1984) Classification and Regression Trees, , Wadsworth and Brooks, MontereyCaglioti, C., Lalle, E., Castilletti, C., Carletti, F., Capobianchi, M.R., Bordi, L., Chikungunya virus infection: An overview (2013) New Microbiologica, 36 (3), pp. 211-227. , http://www.newmicrobiologica.org/PUB/allegatipdf/2013/3/211.pdfCaicedo, W., Quintana, M., Pinzón, H., Differential diagnosis of hemorrhagic fevers using ARTMAP (2012) IBERAMIA 2012. LNCS (LNAI), 7637, pp. 221-230. , https://doi.org/10.1007/978-3-642-34654-523, Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.), Springer, HeidelbergCaicedo-Torres, W., Paternina, Á., Pinzón, H., Machine learning models for early dengue severity prediction (2016) IBERAMIA 2016. LNCS (LNAI), 10022, pp. 247-258. , https://doi.org/10.1007/978-3-319-47955-221, Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.), Springer, ChamCortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn., 20 (3), pp. 273-297. , https://doi.org/10.1007/BF00994018Faisal, T., Taib, M.N., Ibrahim, F., Neural network diagnostic system for dengue patients risk classification (2012) J. Med. Syst., 36 (2), pp. 661-676. , https://doi.org/10.1007/s10916-010-9532-xShameem Fathima, A., Manimeglai, D., Analysis of significant factors for dengue infection prognosis using the random forest classifier (2015) Int. J. Adv. Comput. Sci. Appl. (IJACSA), 6 (2). , https://doi.org/10.14569/IJACSA.2015.060235Fullerton, L.M., Dickin, S.K., Schuster-Wallace, C.J., (2014) Mapping Global Vulnerability to Dengue Using the Water Associated Disease Index, , Technical report, United Nations UniversityGoodfellow, I., Bengio, Y., Courville, A., (2016) Deep Learning, , http://www.deeplearningbook.org, MIT Press, CambridgeKeerthi, S.S., Lin, C.J., Asymptotic behaviors of support vector machines with Gaussian kernel (2003) Neural Comput, 15 (7), pp. 1667-1689. , https://doi.org/10.1162/089976603321891855Khan, M.I.H., Factors predicting severe dengue in patients with dengue fever (2013) Mediterr. J. Hematol. Infect. Diseases, 5 (1)Laoprasopwattana, K., Kaewjungwad, L., Jarumanokul, R., Geater, A., Differential diagnosis of chikungunya, dengue viral infection and other acute febrile illnesses in children (2012) Pediatr. Infect. Disease J., 31 (5). , http://journals.lww.com/pidj/Fulltext/2012/05000/DifferentialDiagnosisofChikungunya,Dengue.8.aspxLee, V.J., Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults (2012) Plos Negl. Trop. Diseases, 6 (9), pp. 1-9. , https://doi.org/10.1371/journal.pntd.0001786Lee, V.J., Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults (2012) Plos Negl. Trop. Diseases, 6 (9). , https://doi.org/10.1371/journal.pntd.0001786,http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459852/Mardekian, S.K., Roberts, A.L., Diagnostic options and challenges for dengue and chikungunya viruses (2015) Biomed. Res. Int., 2015. , https://doi.org/10.1155/2015/834371.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609775/McCullagh, P., Nelder, J., Generalized Linear Models (1989) Chapman & Hall/Crc Monographs on Statistics & Applied Probability, , https://books.google.co.uk/books?id=h9kFH2FfBkC, 2nd edn. Taylor & Francis, Boa Raton (2014), http://www.paho.org/hq/index.php?option=comtopics&view=readall&cid=5932&Itemid=40931&lang=en, Accessed 29 Feb 2016Paternina-Caicedo, A., Features of dengue and chikungunya infections of Colombian children under 24 months of age admitted to the emergency department (2017) J. Trop. Pediatr., , https://doi.org/10.1093/tropej/fmx024Pedregosa, F., Scikit-learn: Machine learning in Python (2011) J. Mach. Learn. Res., 12, pp. 2825-2830Potts, J.A., Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators (2010) Plos Negl. Trop. Dis., 4 (8) (2015), http://www.who.int/mediacentre/factsheets/fs327/en/, Accessed 29 Feb 2016http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8921/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8921oai:repositorio.utb.edu.co:20.500.12585/89212021-02-02 13:44:54.907Repositorio Institucional UTBrepositorioutb@utb.edu.co