Differential diagnosis of dengue and chikungunya in colombian children using machine learning
Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue a...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8921
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8921
- Palabra clave:
- CART
Chikungunya
Decision tree
Dengue
Logistic regression
Support vector machine
Artificial intelligence
Decision trees
Learning algorithms
Pediatrics
Regression analysis
Statistical tests
Support vector machines
CART
Chikungunya
Decision tree classifiers
Dengue
Logistic Regression modeling
Logistic regressions
Receiver operating characteristics
Stratified random sampling
Diagnosis
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_56e39194e4088bf7fd507afa50a7f368 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8921 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning |
title |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning |
spellingShingle |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning CART Chikungunya Decision tree Dengue Logistic regression Support vector machine Artificial intelligence Decision trees Learning algorithms Pediatrics Regression analysis Statistical tests Support vector machines CART Chikungunya Decision tree classifiers Dengue Logistic Regression modeling Logistic regressions Receiver operating characteristics Stratified random sampling Diagnosis |
title_short |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning |
title_full |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning |
title_fullStr |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning |
title_full_unstemmed |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning |
title_sort |
Differential diagnosis of dengue and chikungunya in colombian children using machine learning |
dc.contributor.editor.none.fl_str_mv |
Ferme E. Simari G.R. Gutierrez Segura F. Rodriguez Melquiades J.A. |
dc.subject.keywords.none.fl_str_mv |
CART Chikungunya Decision tree Dengue Logistic regression Support vector machine Artificial intelligence Decision trees Learning algorithms Pediatrics Regression analysis Statistical tests Support vector machines CART Chikungunya Decision tree classifiers Dengue Logistic Regression modeling Logistic regressions Receiver operating characteristics Stratified random sampling Diagnosis |
topic |
CART Chikungunya Decision tree Dengue Logistic regression Support vector machine Artificial intelligence Decision trees Learning algorithms Pediatrics Regression analysis Statistical tests Support vector machines CART Chikungunya Decision tree classifiers Dengue Logistic Regression modeling Logistic regressions Receiver operating characteristics Stratified random sampling Diagnosis |
description |
Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis. © Springer Nature Switzerland AG 2018. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:36Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192 |
dc.identifier.isbn.none.fl_str_mv |
9783030039271 |
dc.identifier.issn.none.fl_str_mv |
03029743 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8921 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-030-03928-8_15 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55782426500 35769665400 56375235000 7401653270 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192 9783030039271 03029743 10.1007/978-3-030-03928-8_15 Universidad Tecnológica de Bolívar Repositorio UTB 55782426500 35769665400 56375235000 7401653270 |
url |
https://hdl.handle.net/20.500.12585/8921 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
13 November 2018 through 16 November 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057089239&doi=10.1007%2f978-3-030-03928-8_15&partnerID=40&md5=eb0deb2a1d840b5ff71ebabd700ffa29 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
16th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2018 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8921/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021553300439040 |
spelling |
Ferme E.Simari G.R.Gutierrez Segura F.Rodriguez Melquiades J.A.Caicedo-Torres W.Paternina-Caicedo Á.Pinzón-Redondo H.Gutiérrez J.2020-03-26T16:32:36Z2020-03-26T16:32:36Z2018Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11238 LNAI, pp. 181-192978303003927103029743https://hdl.handle.net/20.500.12585/892110.1007/978-3-030-03928-8_15Universidad Tecnológica de BolívarRepositorio UTB5578242650035769665400563752350007401653270Dengue and chikungunya are vector borne diseases endemic in tropical countries around the world, with very similar clinical presentation, which makes it hard for physicians to tell them apart. Here we propose the use of Machine Learning based classifiers to perform differential diagnosis of dengue and chikungunya in pediatric patients, using simple blood test results as predictors instead of symptoms. Three variables (platelet count, white cell count and hematocrit percentage) from 447 pediatric patients from Hospital Infantil Napoleón Franco Pareja were collected to construct a dataset, later partitioned into train and test sets using Stratified Random Sampling. Grid Search with Stratified 5-Fold Cross-Validation was conducted to assess the performance of Logistic Regression, Support Vector Machine, and CART Decision Tree classifiers. Cross-Validation results show a L2 Logistic Regression model with second degree polynomial features outperforming the other models considered, with a cross-validated Receiver Operating Characteristic Area Under the Curve (ROC AUC) score of 0.8694. Subsequent results over the test set showed a 0.8502 ROC AUC score. Despite a reduced sample and a heavily imbalanced data set, ROC AUC score results are promising and support our approach for dengue and chikungunya differential diagnosis. © Springer Nature Switzerland AG 2018.Recurso electrónicoapplication/pdfengSpringer Verlaghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85057089239&doi=10.1007%2f978-3-030-03928-8_15&partnerID=40&md5=eb0deb2a1d840b5ff71ebabd700ffa2916th Ibero-American Conference on Artificial Intelligence, IBERAMIA 2018Differential diagnosis of dengue and chikungunya in colombian children using machine learninginfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fCARTChikungunyaDecision treeDengueLogistic regressionSupport vector machineArtificial intelligenceDecision treesLearning algorithmsPediatricsRegression analysisStatistical testsSupport vector machinesCARTChikungunyaDecision tree classifiersDengueLogistic Regression modelingLogistic regressionsReceiver operating characteristicsStratified random samplingDiagnosis13 November 2018 through 16 November 2018Bhatt, S., The global distribution and burden of dengue (2013) Nature, 496 (7446), pp. 504-507. , https://doi.org/10.1038/nature12060,http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651993/Breiman, L., Friedman, J., Olshen, R., Stone, C., (1984) Classification and Regression Trees, , Wadsworth and Brooks, MontereyCaglioti, C., Lalle, E., Castilletti, C., Carletti, F., Capobianchi, M.R., Bordi, L., Chikungunya virus infection: An overview (2013) New Microbiologica, 36 (3), pp. 211-227. , http://www.newmicrobiologica.org/PUB/allegatipdf/2013/3/211.pdfCaicedo, W., Quintana, M., Pinzón, H., Differential diagnosis of hemorrhagic fevers using ARTMAP (2012) IBERAMIA 2012. LNCS (LNAI), 7637, pp. 221-230. , https://doi.org/10.1007/978-3-642-34654-523, Pavón, J., Duque-Méndez, N.D., Fuentes-Fernández, R. (eds.), Springer, HeidelbergCaicedo-Torres, W., Paternina, Á., Pinzón, H., Machine learning models for early dengue severity prediction (2016) IBERAMIA 2016. LNCS (LNAI), 10022, pp. 247-258. , https://doi.org/10.1007/978-3-319-47955-221, Montes-y-Gómez, M., Escalante, H.J., Segura, A., Murillo, J.D. (eds.), Springer, ChamCortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn., 20 (3), pp. 273-297. , https://doi.org/10.1007/BF00994018Faisal, T., Taib, M.N., Ibrahim, F., Neural network diagnostic system for dengue patients risk classification (2012) J. Med. Syst., 36 (2), pp. 661-676. , https://doi.org/10.1007/s10916-010-9532-xShameem Fathima, A., Manimeglai, D., Analysis of significant factors for dengue infection prognosis using the random forest classifier (2015) Int. J. Adv. Comput. Sci. Appl. (IJACSA), 6 (2). , https://doi.org/10.14569/IJACSA.2015.060235Fullerton, L.M., Dickin, S.K., Schuster-Wallace, C.J., (2014) Mapping Global Vulnerability to Dengue Using the Water Associated Disease Index, , Technical report, United Nations UniversityGoodfellow, I., Bengio, Y., Courville, A., (2016) Deep Learning, , http://www.deeplearningbook.org, MIT Press, CambridgeKeerthi, S.S., Lin, C.J., Asymptotic behaviors of support vector machines with Gaussian kernel (2003) Neural Comput, 15 (7), pp. 1667-1689. , https://doi.org/10.1162/089976603321891855Khan, M.I.H., Factors predicting severe dengue in patients with dengue fever (2013) Mediterr. J. Hematol. Infect. Diseases, 5 (1)Laoprasopwattana, K., Kaewjungwad, L., Jarumanokul, R., Geater, A., Differential diagnosis of chikungunya, dengue viral infection and other acute febrile illnesses in children (2012) Pediatr. Infect. Disease J., 31 (5). , http://journals.lww.com/pidj/Fulltext/2012/05000/DifferentialDiagnosisofChikungunya,Dengue.8.aspxLee, V.J., Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults (2012) Plos Negl. Trop. Diseases, 6 (9), pp. 1-9. , https://doi.org/10.1371/journal.pntd.0001786Lee, V.J., Simple clinical and laboratory predictors of chikungunya versus dengue infections in adults (2012) Plos Negl. Trop. Diseases, 6 (9). , https://doi.org/10.1371/journal.pntd.0001786,http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459852/Mardekian, S.K., Roberts, A.L., Diagnostic options and challenges for dengue and chikungunya viruses (2015) Biomed. Res. Int., 2015. , https://doi.org/10.1155/2015/834371.http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609775/McCullagh, P., Nelder, J., Generalized Linear Models (1989) Chapman & Hall/Crc Monographs on Statistics & Applied Probability, , https://books.google.co.uk/books?id=h9kFH2FfBkC, 2nd edn. Taylor & Francis, Boa Raton (2014), http://www.paho.org/hq/index.php?option=comtopics&view=readall&cid=5932&Itemid=40931&lang=en, Accessed 29 Feb 2016Paternina-Caicedo, A., Features of dengue and chikungunya infections of Colombian children under 24 months of age admitted to the emergency department (2017) J. Trop. Pediatr., , https://doi.org/10.1093/tropej/fmx024Pedregosa, F., Scikit-learn: Machine learning in Python (2011) J. Mach. Learn. Res., 12, pp. 2825-2830Potts, J.A., Prediction of dengue disease severity among pediatric Thai patients using early clinical laboratory indicators (2010) Plos Negl. Trop. Dis., 4 (8) (2015), http://www.who.int/mediacentre/factsheets/fs327/en/, Accessed 29 Feb 2016http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8921/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8921oai:repositorio.utb.edu.co:20.500.12585/89212021-02-02 13:44:54.907Repositorio Institucional UTBrepositorioutb@utb.edu.co |