Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia

Previous soil moisture conditions play an important role in the design of hydraulic structures because they are directly related to the runoff threshold associated with a return period. These represent one of the main determinants of the runoff response of a drainage basin. One of the main difficult...

Full description

Autores:
Salgado-Cassiani, Julio Jose
Coronado-Hernández, Oscar E.
Gatica, Gustavo
Linfati, Rodrigo
Coronado-Hernández, Jairo R
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12315
Acceso en línea:
https://hdl.handle.net/20.500.12585/12315
Palabra clave:
Antecedent moisture condition
Frequency analysis
Precipitation
Return period
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_559f89f6c6109abf9f5aa44c0cabac84
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12315
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
title Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
spellingShingle Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
Antecedent moisture condition
Frequency analysis
Precipitation
Return period
title_short Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
title_full Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
title_fullStr Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
title_full_unstemmed Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
title_sort Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia
dc.creator.fl_str_mv Salgado-Cassiani, Julio Jose
Coronado-Hernández, Oscar E.
Gatica, Gustavo
Linfati, Rodrigo
Coronado-Hernández, Jairo R
dc.contributor.author.none.fl_str_mv Salgado-Cassiani, Julio Jose
Coronado-Hernández, Oscar E.
Gatica, Gustavo
Linfati, Rodrigo
Coronado-Hernández, Jairo R
dc.subject.keywords.spa.fl_str_mv Antecedent moisture condition
Frequency analysis
Precipitation
Return period
topic Antecedent moisture condition
Frequency analysis
Precipitation
Return period
description Previous soil moisture conditions play an important role in the design of hydraulic structures because they are directly related to the runoff threshold associated with a return period. These represent one of the main determinants of the runoff response of a drainage basin. One of the main difficulties facing hydrologists in Colombia lies in the time spent gathering and analyzing information related to the selection of antecedent moisture conditions. In this study, complete records from 19 rainfall stations located in the Atlántico region, Colombia, were used to analyze the cumulative precipitation during the 5 days prior to the annual maximum daily precipitation associated with different return periods using the Gev, Gumbel, Pearson Type III and Log Pearson Type III probability distributions. Different interpolation methods (IDW, kriging and spline) were applied to evaluate the spatial distribution of the antecedent moisture conditions. The main contribution of this research is establishing, using a probabilistic approach, the behavior of antecedent moisture conditions in a particular region, which can be used by engineers and designers to plan water infrastructure. This probabilistic approach was applied to a case study of the Atlántico region, Colombia, where the spatial distribution of antecedent moisture conditions was calculated for several return periods. The results indicate that the better results were obtained with the IDW interpolation method, and the Pearson Type III and Gumbel distributions also showed the best fits based on the Akaike criterion.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-04-10
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:19:34Z
dc.date.available.none.fl_str_mv 2023-07-21T16:19:34Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Salgado-Cassiani, J.J.; Coronado-Hernández, O.E.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia. Water 2022, 14, 1217. https://doi.org/10.3390/w14081217
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12315
dc.identifier.doi.none.fl_str_mv 10.3390/w14081217
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Salgado-Cassiani, J.J.; Coronado-Hernández, O.E.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia. Water 2022, 14, 1217. https://doi.org/10.3390/w14081217
10.3390/w14081217
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12315
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 24 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Water (Switzerland) - Vol. 14 No 8 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/1/Probabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/4/Probabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/5/Probabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.jpg
bitstream.checksum.fl_str_mv 27da0b45c737d03d0e198af351e69b38
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
89123e21d37ee1a42007b39767e8697d
9938a1bd79d555e93009fc1858812bc9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021782805413888
spelling Salgado-Cassiani, Julio Jose71e640c3-0949-462d-aad4-da340bf83f08Coronado-Hernández, Oscar E.f7a2fa8b-0bf4-4814-84e5-164c0b4b3c36Gatica, Gustavofe6fa1c9-2c41-4f0b-9b8c-8dbc65eb42a0Linfati, Rodrigo79103349-d6c9-4052-8457-67d85d6af70bCoronado-Hernández, Jairo R86b71d5d-cfcc-464b-9792-545bb0afd5a52023-07-21T16:19:34Z2023-07-21T16:19:34Z2022-04-102023-07Salgado-Cassiani, J.J.; Coronado-Hernández, O.E.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia. Water 2022, 14, 1217. https://doi.org/10.3390/w14081217https://hdl.handle.net/20.500.12585/1231510.3390/w14081217Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPrevious soil moisture conditions play an important role in the design of hydraulic structures because they are directly related to the runoff threshold associated with a return period. These represent one of the main determinants of the runoff response of a drainage basin. One of the main difficulties facing hydrologists in Colombia lies in the time spent gathering and analyzing information related to the selection of antecedent moisture conditions. In this study, complete records from 19 rainfall stations located in the Atlántico region, Colombia, were used to analyze the cumulative precipitation during the 5 days prior to the annual maximum daily precipitation associated with different return periods using the Gev, Gumbel, Pearson Type III and Log Pearson Type III probability distributions. Different interpolation methods (IDW, kriging and spline) were applied to evaluate the spatial distribution of the antecedent moisture conditions. The main contribution of this research is establishing, using a probabilistic approach, the behavior of antecedent moisture conditions in a particular region, which can be used by engineers and designers to plan water infrastructure. This probabilistic approach was applied to a case study of the Atlántico region, Colombia, where the spatial distribution of antecedent moisture conditions was calculated for several return periods. The results indicate that the better results were obtained with the IDW interpolation method, and the Pearson Type III and Gumbel distributions also showed the best fits based on the Akaike criterion.24 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Water (Switzerland) - Vol. 14 No 8 (2022)Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombiainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Antecedent moisture conditionFrequency analysisPrecipitationReturn periodCartagena de IndiasChow, V.T., Maidment, D.R., Mays, L.W. (1988) Applied Hydrology, pp. 350-376. Cited 4195 times. 1st ed.; McGraw-Hill: New York, NY, USACeballos, A., Schnabel, S. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain) (1998) Journal of Hydrology, 210 (1-4), pp. 146-160. Cited 97 times. doi: 10.1016/S0022-1694(98)00180-2Dusek, J., Vogel, T. Hillslope-storage and rainfall-amount thresholds as controls of preferential stormflow (2016) Journal of Hydrology, 534, pp. 590-605. Cited 23 times. www.elsevier.com/inca/publications/store/5/0/3/3/4/3 doi: 10.1016/j.jhydrol.2016.01.047Berne, A., Delrieu, G., Creutin, J.-D., Obled, C. Temporal and spatial resolution of rainfall measurements required for urban hydrology (2004) Journal of Hydrology, 299 (3-4), pp. 166-179. Cited 369 times. www.elsevier.com/inca/publications/store/5/0/3/3/4/3 doi: 10.1016/S0022-1694(04)00363-4Manfreda, S., Fiorentino, M., Iacobellis, V. DREAM: A distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation (2005) Advances in Geosciences, 2, pp. 31-39. Cited 62 times. http://www.adv-geosci.net/volumes.html doi: 10.5194/adgeo-2-31-2005Lazzari, M., Piccarreta, M., Ray, L.R., Manfreda, S. Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shallow Landslides Occurrence (2020) Landslides: Investigation and Monitoring. Cited 9 times. Ram, L.R., Lazzari, M., Eds.; IntechOpen: London, UK, (accessed on 1 February 2022) https://www.intechopen.com/chapters/72592Lazzari, M., Piccarreta, M., Manfreda, S. The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides (2018) Nat. Hazards Earth Syst. Sci, pp. 1-11. Cited 17 times. https://nhess.coperni-cus.org/preprints/nhess-2018-371 (accessed on 20 February 2022) https://doi.org/10.5194/nhess-2018-371Poveda, G., Jaramillo, A., Gil, M.M., Quiceno, N., Mantilla, R.I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia (2001) Water Resources Research, 37 (8), pp. 2169-2178. Cited 178 times. doi: 10.1029/2000WR900395Kim, G.-S., Lee, S.-G., Lee, J., Park, E., Song, C., Hong, M., Ko, Y.-J., (...), Lee, W.-K. Effects of Forest and Agriculture Land Covers on Organic Carbon Flux Mediated through Precipitation (2022) Water (Switzerland), 14 (4), art. no. 623. https://www.mdpi.com/2073-4441/14/4/623/pdf doi: 10.3390/w14040623Darouich, H., Ramos, T.B., Pereira, L.S., Rabino, D., Bagagiolo, G., Capello, G., Simionesei, L., (...), Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation (2022) Water (Switzerland), 14 (4), art. no. 554. Cited 9 times. https://www.mdpi.com/2073-4441/14/4/554/pdf doi: 10.3390/w14040554Waylen, P., Poveda, G. El Nino-Southern Oscillation and aspects of western South American hydro-climatology (2002) Hydrological Processes, 16 (6), pp. 1247-1260. Cited 56 times. doi: 10.1002/hyp.1060de Alcântara, L.R.P., Coutinho, A.P., Neto, S.M.S., de Gusmão da Cunha Rabelo, A.E.C., Antonino, A.C.D. Computational modeling of the hydrological processes in caatinga and pasture areas in the brazilian semi-arid (2021) Water (Switzerland), 13 (13), art. no. 1877. Cited 4 times. https://www.mdpi.com/2073-4441/13/13/1877/pdf doi: 10.3390/w13131877(1967) A Uniform Technique for Determining Flood Flow Frequencies. Cited 27 times. Bulletin 15; U.S. Water Resources Council: Washington, DC, USACunnane, C. Methods and merits of regional flood frequency analysis (1988) Journal of Hydrology, 100 (1-3), pp. 269-290. Cited 274 times. doi: 10.1016/0022-1694(88)90188-6Griffis, V.W., Stedinger, J.R. Log-Pearson type 3 distribution and Its application in flood frequency analysis. I: Distribution characteristics (Open Access) (2007) Journal of Hydrologic Engineering, 12 (5), pp. 482-491. Cited 97 times. doi: 10.1061/(ASCE)1084-0699(2007)12:5(482)Burgess, C.P., Taylor, M.A., Stephenson, T., Mandal, A. Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895-2100) (2015) Journal of Hydrology: Regional Studies, 3, pp. 424-443. Cited 14 times. doi: 10.1016/j.ejrh.2014.10.004González-álvarez, A., Viloria-Marimón, O.M., Coronado-Hernández, O.E., Vélez-Pereira, A.M., Tesfagiorgis, K., Coronado-Hernández, J.R. Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region (Open Access) (2019) Water (Switzerland), 11 (2), art. no. 358. Cited 17 times. https://res.mdpi.com/water/water-11-00358/article_deploy/water-11-00358.pdf doi: 10.3390/w11020358izarro, R., Ingram, B., Gonzalez-Leiva, F., Valdés-Pineda, R., Sangüesa, C., Delgado, N., García-Chevesich, P., (...), Valdés, J.B. WEBSEIDF: A web-based system for the estimation of IDF curves in central Chile (Open Access) (2018) Hydrology, 5 (3), art. no. 40. Cited 8 times. https://res.mdpi.com/hydrology/hydrology-05-00040/article_deploy/hydrology-05-00040.pdf?filename=&attachment=1 doi: 10.3390/hydrology5030040Akaike, H. A New Look at the Statistical Model Identification (1974) IEEE Transactions on Automatic Control, 19 (6), pp. 716-723. Cited 37038 times. doi: 10.1109/TAC.1974.1100705Akaike, H. Information theory and an extension of the maximum likelihood principle (1998) Selected Papers of Hirotugu Akaike, pp. 199-213. Cited 1694 times. Springer: Berlin/Heidelberg, GermanySalas, J.D., Obeysekera, J., Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: a review (Open Access) (2018) Hydrological Sciences Journal, 63 (3), pp. 325-352. Cited 128 times. http://www.tandfonline.com/loi/thsj20 doi: 10.1080/02626667.2018.1426858Ikechukwu, M.N., Ebinne, E., Idorenyin, U., Raphael, N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study (2017) Earth Environ. Sci, 9, pp. 354-371. Cited 62 times.Ngongondo, C., Li, L., Gong, L., Xu, C.-Y., Alemaw, B.F. Flood frequency under changing climate in the upper Kafue River basin, southern Africa: A large scale hydrological model application (Open Access) (2013) Stochastic Environmental Research and Risk Assessment, 27 (8), pp. 1883-1898. Cited 21 times. doi: 10.1007/s00477-013-0724-zLópez, J., Goñi, M., Martín, I.S., Erro, J. Regional frequency analysis of annual maximum daily rainfall in Navarra (2019) Quantiles mapping. Ing. Del Agua, 23, pp. 33-51.Bhunia, G.S., Shit, P.K., Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC) (Open Access) (2018) Journal of the Saudi Society of Agricultural Sciences, 17 (2), pp. 114-126. Cited 175 times. https://www.journals.elsevier.com/journal-of-the-saudi-society-of-agricultural-sciences/ doi: 10.1016/j.jssas.2016.02.001Vargas, A., Santos, A., Cárdenas, E., Obregón, N. Distribution and spatial interpolation of rainfall in Bogotá, Colombia (2011) Dyna, 167, pp. 151-159. Cited 14 times.Simpson, G., Wu, Y.H. Accuracy and effort of interpolation and sampling: Can GIS help lower field costs? (Open Access) (2014) ISPRS International Journal of Geo-Information, 3 (4), pp. 1317-1333. Cited 25 times. http://www.mdpi.com/2220-9964/3/4/1317/pdf doi: 10.3390/ijgi3041317Marzouk, M., Attia, K., Azab, S. Assessment of Coastal Vulnerability to Climate Change Impacts using GIS and Remote Sensing: A Case Study of Al-Alamein New City (Open Access) (2021) Journal of Cleaner Production, 290, art. no. 125723. Cited 13 times. https://www.journals.elsevier.com/journal-of-cleaner-production doi: 10.1016/j.jclepro.2020.125723Malam Issa, O., Valentin, C., Rajot, J.L., Cerdan, O., Desprats, J.-F., Bouchet, T. Runoff generation fostered by physical and biological crusts in semi-arid sandy soils (2011) Geoderma, 167-168, pp. 22-29. Cited 69 times. doi: 10.1016/j.geoderma.2011.09.013Dunne, T. Relation of field studies and modeling in the prediction of storm runoff (Open Access) (1983) Journal of Hydrology, 65 (1-3), pp. 25-48. Cited 169 times. doi: 10.1016/0022-1694(83)90209-3Barling, R.D., Moore, I.D., Grayson, R.B. A quasi‐dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content (Open Access) (1994) Water Resources Research, 30 (4), pp. 1029-1044. Cited 238 times. doi: 10.1029/93WR03346http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALProbabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdfProbabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdfapplication/pdf3974705https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/1/Probabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf27da0b45c737d03d0e198af351e69b38MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTProbabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.txtProbabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.txtExtracted texttext/plain58761https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/4/Probabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.txt89123e21d37ee1a42007b39767e8697dMD54THUMBNAILProbabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.jpgProbabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.jpgGenerated Thumbnailimage/jpeg7959https://repositorio.utb.edu.co/bitstream/20.500.12585/12315/5/Probabilistic-Approach-to-Determine-the-Spatial-Distribution-of-the-Antecedent-Moisture-Conditions-for-Different-Return-Periods-in-the-Atlntico-Region-ColombiaWater-Switzerland.pdf.jpg9938a1bd79d555e93009fc1858812bc9MD5520.500.12585/12315oai:repositorio.utb.edu.co:20.500.12585/123152023-07-22 00:18:22.13Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=