Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction

Diabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific co...

Full description

Autores:
Rios, Y. Yuliana
García-Rodríguez, J.A
Sanchez, Edgar N.
Alanis, Alma Y.
Ruiz-Velázquez, E.
Pardo Garcia, Aldo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12172
Acceso en línea:
https://hdl.handle.net/20.500.12585/12172
Palabra clave:
Recurrent neural network
Fuzzy inference
Uva/Padova simulator
Neural multi-step predictor
Type 1 Diabetes Mellitus
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5478b45fcd70b0da8a3a03ee3ab55a1d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12172
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
title Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
spellingShingle Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
Recurrent neural network
Fuzzy inference
Uva/Padova simulator
Neural multi-step predictor
Type 1 Diabetes Mellitus
title_short Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
title_full Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
title_fullStr Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
title_full_unstemmed Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
title_sort Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction
dc.creator.fl_str_mv Rios, Y. Yuliana
García-Rodríguez, J.A
Sanchez, Edgar N.
Alanis, Alma Y.
Ruiz-Velázquez, E.
Pardo Garcia, Aldo
dc.contributor.author.none.fl_str_mv Rios, Y. Yuliana
García-Rodríguez, J.A
Sanchez, Edgar N.
Alanis, Alma Y.
Ruiz-Velázquez, E.
Pardo Garcia, Aldo
dc.subject.keywords.spa.fl_str_mv Recurrent neural network
Fuzzy inference
Uva/Padova simulator
Neural multi-step predictor
Type 1 Diabetes Mellitus
topic Recurrent neural network
Fuzzy inference
Uva/Padova simulator
Neural multi-step predictor
Type 1 Diabetes Mellitus
description Diabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications. This contribution is related to a feedback control strategy for blood glucose management in population samples of ten virtual adult subjects, adolescents and children. This scheme focuses on the development of an inverse optimal control (IOC) proposal which is integrated by neural identification, a multi-step prediction (MSP) strategy, and Takagi–Sugeno (T–S) fuzzy inference to shape the convenient insulin infusion in the treatment of T1DM patients. The MSP makes it possible to estimate the glucose dynamics 15 min in advance; therefore, this estimation allows the Neuro-Fuzzy-IOC (NF-IOC) controller to react in advance to prevent hypoglycemic and hyperglycemic events. The T–S fuzzy membership functions are defined in such a way that the respective inferences change basal infusion rates for each patient's condition. The results achieved for scenarios simulated in Uva/Padova virtual software illustrate that this proposal is suitable to maintain blood glucose levels within normoglycemic values (70–115 mg/dL); furthermore, this level remains less than 250 mg/dL during the postprandial event. A comparison between a simple neural IOC (NIOC) and the proposed NF-IOC is carried out using the analysis for control variability named CVGA chart included in the Uva/Padova software. This analysis highlights the improvement of the NF-IOC treatment, proposed in this article, on the NIOC approach because each subject is located inside safe zones for the entire duration of the simulation
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-07
dc.date.accessioned.none.fl_str_mv 2023-07-19T21:13:05Z
dc.date.available.none.fl_str_mv 2023-07-19T21:13:05Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Yuliana Rios, Y., García-Rodríguez, J. A., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., & Garcia, A. P. (2022). Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Transactions, 126. https://doi.org/10.1016/j.isatra.2021.07.045
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12172
dc.identifier.doi.none.fl_str_mv 10.1016/j.isatra.2021.07.045
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Yuliana Rios, Y., García-Rodríguez, J. A., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., & Garcia, A. P. (2022). Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Transactions, 126. https://doi.org/10.1016/j.isatra.2021.07.045
10.1016/j.isatra.2021.07.045
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12172
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv ISA Transactions - Vol. 126
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/1/Treatment%20for%20T1DM%20patients%20by%20a%20neuro-fuzzy%20inverse%20optimal%20controller%20including%20multi-step%20prediction.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/4/Treatment%20for%20T1DM%20patients%20by%20a%20neuro-fuzzy%20inverse%20optimal%20controller%20including%20multi-step%20prediction.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/5/Treatment%20for%20T1DM%20patients%20by%20a%20neuro-fuzzy%20inverse%20optimal%20controller%20including%20multi-step%20prediction.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
41a0170a5948df19a46271c5c8fa112a
e20ad307a1c5f3f25af9304a7a7c86b6
5c9dc4d3b06969b237b3c336204ddec3
cd8d657afa2184e63466b97bbcaa36e3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021623613751296
spelling Rios, Y. Yuliana2e5d244a-ee96-4d51-8441-17659df20a44García-Rodríguez, J.A66fb6c6d-c6df-498c-9e12-85c5a06389a3Sanchez, Edgar N.dde5501b-9920-4b9c-8ae4-6378407a487cAlanis, Alma Y.e3a9155e-04ad-4ce3-972e-03923c3305beRuiz-Velázquez, E.c52110a4-da5c-4ebe-acb8-77dc239458f5Pardo Garcia, Aldo3e44cda3-c4d1-46d1-8551-af25e3f4caa72023-07-19T21:13:05Z2023-07-19T21:13:05Z2022-072023-07Yuliana Rios, Y., García-Rodríguez, J. A., Sanchez, E. N., Alanis, A. Y., Ruiz-Velázquez, E., & Garcia, A. P. (2022). Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction. ISA Transactions, 126. https://doi.org/10.1016/j.isatra.2021.07.045https://hdl.handle.net/20.500.12585/1217210.1016/j.isatra.2021.07.045Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDiabetes Mellitus is a serious metabolic condition for global health associations. Recently, the number of adults, adolescents and children who have developed Type 1 Diabetes Mellitus (T1DM) has increased as well as the mortality statistics related to this disease. For this reason, the scientific community has directed research in developing technologies to reduce T1DM complications. This contribution is related to a feedback control strategy for blood glucose management in population samples of ten virtual adult subjects, adolescents and children. This scheme focuses on the development of an inverse optimal control (IOC) proposal which is integrated by neural identification, a multi-step prediction (MSP) strategy, and Takagi–Sugeno (T–S) fuzzy inference to shape the convenient insulin infusion in the treatment of T1DM patients. The MSP makes it possible to estimate the glucose dynamics 15 min in advance; therefore, this estimation allows the Neuro-Fuzzy-IOC (NF-IOC) controller to react in advance to prevent hypoglycemic and hyperglycemic events. The T–S fuzzy membership functions are defined in such a way that the respective inferences change basal infusion rates for each patient's condition. The results achieved for scenarios simulated in Uva/Padova virtual software illustrate that this proposal is suitable to maintain blood glucose levels within normoglycemic values (70–115 mg/dL); furthermore, this level remains less than 250 mg/dL during the postprandial event. A comparison between a simple neural IOC (NIOC) and the proposed NF-IOC is carried out using the analysis for control variability named CVGA chart included in the Uva/Padova software. This analysis highlights the improvement of the NF-IOC treatment, proposed in this article, on the NIOC approach because each subject is located inside safe zones for the entire duration of the simulation10 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ISA Transactions - Vol. 126Treatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step predictioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Recurrent neural networkFuzzy inferenceUva/Padova simulatorNeural multi-step predictorType 1 Diabetes MellitusCartagena de IndiasCampus TecnológicoThe Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus (1993) New England Journal of Medicine, 329 (14), pp. 977-986. Cited 23013 times. doi: 10.1056/NEJM199309303291401Turner, R. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) (1998) Lancet, 352 (9131), pp. 837-853. Cited 19212 times. http://www.journals.elsevier.com/the-lancet/ doi: 10.1016/S0140-6736(98)07019-6DeFronzo, R., Ferrannini, E., Alberti, K., Zimmet, P. The classification and diagnosis of diabetes mellitus (2015) International textbook of diabetes mellitus, pp. 24-30. Sons J.W.&. 4th ed. John Wiley & Sons New Jersey, Middle Atlantic, U.S. [Ch. 1]DeFronzo, R.A. Epidemiology and risk factors for type 1 diabetes mellitus (2015) International textbook of diabetes mellitus, pp. 17-28. Sons J.W.&. 4th ed. John Wiley & Sons Oxford, U.K. [Ch. 2]Majithia, A.R., Wiltschko, A.B., Zheng, H., Walford, G.A., Nathan, D.M. Rate of Change of Premeal Glucose Measured by Continuous Glucose Monitoring Predicts Postmeal Glycemic Excursions in Patients With Type 1 Diabetes: Implications for Therapy (2018) Journal of Diabetes Science and Technology, 12 (1), pp. 76-82. Cited 5 times. http://dst.sagepub.com/content/by/year doi: 10.1177/1932296817725756Hovorka, R. Continuous glucose monitoring and closed-loop systems (2006) Diabetic Medicine, 23 (1), pp. 1-12. Cited 357 times. doi: 10.1111/j.1464-5491.2005.01672.xKux, L. Guidance for industry and food and drug administration staff; the content of investigational device exemption and premarket approval applications for artificial pancreas device systems; availability (2012) Fed Regist, 77 (226), pp. 1-63. Cited 3 times.Messori, M., Paolo Incremona, G., Cobelli, C., Magni, L. Individualized model predictive control for the artificial pancreas: In silico evaluation of closed-loop glucose control (2018) IEEE Control Systems, 38 (1), art. no. 8263475, pp. 86-104. Cited 63 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766314Magni, L., Forgione, M., Toffanin, C., Dalla Man, C., Kovatchev, B., De Nicolao, G., Cobelli, C. Run-to-run tuning of model predictive control for type 1 diabetes subjects: In silico trial (2009) Journal of Diabetes Science and Technology, 3 (5), pp. 1091-1098. Cited 87 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680900300512Messori, M., Ellis, M., Cobelli, C., Christofides, P.D., Magni, L. Improved postprandial glucose control with a customized Model Predictive Controller (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7172136, pp. 5108-5115. Cited 24 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7172136Gondhalekar, R., Dassau, E., Doyle, F.J. Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7170967, pp. 1635-1640. Cited 14 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7170967Ortmann, L., Shi, D., Dassau, E., Doyle, F.J., Leonhardt, S., Misgeld, B.J.E. Gaussian process-based model predictive control of blood glucose for patients with type 1 diabetes mellitus (2018) 2017 Asian Control Conference, ASCC 2017, 2018-January, pp. 1092-1097. Cited 16 times. ISBN: 978-150901573-3 doi: 10.1109/ASCC.2017.8287323Resalat, N., Youssef, J.E., Reddy, R., Jacobs, P.G. Design of a dual-hormone model predictive control for artificial pancreas with exercise model (2016) Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2016-October, art. no. 7591182, pp. 2270-2273. Cited 20 times. ISBN: 978-145770220-4 doi: 10.1109/EMBC.2016.7591182Tang, F., Wang, Y. Design of Bi-hormonal artificial pancreas system using switching economic model predictive control (2017) Chinese Control Conference, CCC, art. no. 8028078, pp. 4579-4584. Cited 3 times. http://ieeexplore.ieee.org// ISBN: 978-988156393-4 doi: 10.23919/ChiCC.2017.8028078Wang, Q., Xie, J., Molenaar, P., Ulbrecht, J. Model predictive control for type 1 diabetes based on personalized linear time-varying subject model consisting of both insulin and meal inputs: In Silico evaluation (2015) Proceedings of the American Control Conference, 2015-July, art. no. 7172245, pp. 5782-5787. Cited 6 times. ISBN: 978-147998684-2 doi: 10.1109/ACC.2015.7172245Colmegna, P., Sánchez-Peña, R.S., Gondhalekar, R. Control-oriented linear parameter-varying model for glucose control in type 1 diabetes (2016) 2016 IEEE Conference on Control Applications, CCA 2016, art. no. 7587865, pp. 410-415. Cited 10 times. ISBN: 978-150900755-4 doi: 10.1109/CCA.2016.7587865Patek, S.D., Magni, L., Dassau, E., Hughes-Karvetski, C., Toffanin, C., De Nicolao, G., Del Favero, S., (...), Kovatchev, B.P. Modular closed-loop control of diabetes (Open Access) (2012) IEEE Transactions on Biomedical Engineering, 59 (11 PART1), art. no. 6177651, pp. 2986-2999. Cited 141 times. doi: 10.1109/TBME.2012.2192930Galadanci, J., Shafik, R.A., Mathew, J., Acharyya, A., Pradhan, D.K. A closed-loop control strategy for glucose control in artificial pancreas systems (2012) Proceedings - 2012 International Symposium on Electronic System Design, ISED 2012, art. no. 6526604, pp. 295-299. Cited 6 times. ISBN: 978-076954902-6 doi: 10.1109/ISED.2012.76Kovacs, L., Szalay, P., Benyo, B., Chase, G.J. Asymptotic output tracking in blood glucose control. A case study (2011) Proceedings of the IEEE Conference on Decision and Control, art. no. 6161400, pp. 59-64. Cited 7 times. ISBN: 978-161284800-6 doi: 10.1109/CDC.2011.6161400Leon, B.S., Alanis, A.Y., Sanchez, E.N., Ornelas-Tellez, F., Ruiz-Velazquez, E. Neural inverse optimal control applied to type 1 diabetes mellitus patients (Open Access) (2013) Analog Integrated Circuits and Signal Processing, 76 (3), pp. 343-352. Cited 7 times. doi: 10.1007/s10470-013-0109-8Rios, Y.Y., García-Rodríguez, J.A., Sánchez, O.D., Sanchez, E.N., Alanis, A.Y., Ruiz-Velázquez, E., Arana-Daniel, N. Inverse Optimal Control Using A Neural Multi-Step Predictor for T1DM Treatment (2018) Proceedings of the International Joint Conference on Neural Networks, 2018-July, art. no. 8489197. Cited 9 times. ISBN: 978-150906014-6 doi: 10.1109/IJCNN.2018.8489197Karahoca, A., Karahoca, D., Kara, A. Diagnosis of diabetes by using adaptive neuro fuzzy inference systems (2009) ICSCCW 2009 - 5th International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, art. no. 5379497. Cited 11 times. ISBN: 978-142443428-2 doi: 10.1109/ICSCCW.2009.5379497Geman, O., Chiuchisan, I., Toderean, R. Application of Adaptive Neuro-Fuzzy Inference System for diabetes classification and prediction (Open Access) (2017) 2017 E-Health and Bioengineering Conference, EHB 2017, art. no. 7995505, pp. 639-642. Cited 30 times. ISBN: 978-153860358-1 doi: 10.1109/EHB.2017.7995505Lekkas, S., Mikhailov, L. Evolving fuzzy medical diagnosis of Pima Indians diabetes and of dermatological diseases (Open Access) (2010) Artificial Intelligence in Medicine, 50 (2), pp. 117-126. Cited 76 times. doi: 10.1016/j.artmed.2010.05.007Nath, A., Dey, R., Balas, V.E. Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control (2018) Advances in Intelligent Systems and Computing, 634, pp. 286-296. Cited 10 times. http://www.springer.com/series/11156 ISBN: 978-331962523-2 doi: 10.1007/978-3-319-62524-9_23Alanis, A.Y., Sanchez, E.N., Loukianov, A.G. Discrete-time adaptive backstepping nonlinear control via high-order neural networks (2007) IEEE Transactions on Neural Networks, 18 (4), pp. 1185-1195. Cited 151 times. doi: 10.1109/TNN.2007.899170Quintero-Manriquez, E., Sanchez, E.N., Harley, R.G., Li, S., Felix, R.A. Neural Sliding Mode Control for Induction Motors Using Rapid Control Prototyping (Open Access) (2017) IFAC-PapersOnLine, 50 (1), pp. 9625-9630. Cited 8 times. http://www.journals.elsevier.com/ifac-papersonline/ doi: 10.1016/j.ifacol.2017.08.1711Rovithakis, G.A., Christodoulou, M.A. Adaptive control with recurrent high-order neural networks: Theory and industrial applications (2000) , p. 196. Cited 340 times. Springer London, U.K.Sanchez, E.N., Alanis, A.Y., Loukianov, A.G. Discrete-time high order neural control: trained with Kalman filtering, vol. 112 (2008) , p. 116. Cited 156 times. Springer Science & Business Media Berlin, GermanySanchez, E.N., Ornelas-Tellez, F. Discrete-time inverse optimal control for nonlinear systems (Open Access) (2017) Discrete-Time Inverse Optimal Control for Nonlinear Systems, pp. 1-232. Cited 38 times. http://www.tandfebooks.com/doi/book/10.1201/b14779 ISBN: 978-146658088-6; 978-146658087-9 doi: 10.1201/b14779Li, W., Todorov, E., Liu, D. Inverse optimality design for biological movement systems (2011) IFAC Proceedings Volumes (IFAC-PapersOnline), 44 (1 PART 1), pp. 9662-9667. Cited 25 times. http://www.ifac-papersonline.net/browser?browse=c ISBN: 978-390266193-7 doi: 10.3182/20110828-6-IT-1002.00877Freeman, R.A., Kokotović, P. Robust nonlinear control design (2009) , p. 255. Cited 1040 times. Birkhäuser Boston, Massachusetts, U.S.Ornelas, F., Sanchez, E.N., Loukianov, A.G. Discrete-time nonlinear systems inverse optimal control: A control Lyapunov function approach (Open Access) (2011) Proceedings of the IEEE International Conference on Control Applications, art. no. 6044461, pp. 1431-1436. Cited 33 times. ISBN: 978-145771062-9 doi: 10.1109/CCA.2011.6044461Ornelas-Tellez, F., Sanchez, E.N., Loukianov, A.G., Navarro-Lopez, E.M. Speed-gradient inverse optimal control for discrete-time nonlinear systems (Open Access) (2011) Proceedings of the IEEE Conference on Decision and Control, art. no. 6160374, pp. 290-295. Cited 27 times. ISBN: 978-161284800-6 doi: 10.1109/CDC.2011.6160374Kirk, D.E. Optimal control theory: an introduction (1970) , p. 564. Cited 2944 times. springer-v ed. Prentice-Hall Englewood Cliffs, New Jersey, U.S.Basar, T., Olsder, G.J. Dynamic noncooperative game theory (1999) , p. 526. Cited 3437 times. 2nd ed. Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania, U.S.Ohsawa, T., Bloch, A.M., Leok, M. Discrete Hamilton-Jacobi theory and discrete optimal control (Open Access) (2010) Proceedings of the IEEE Conference on Decision and Control, art. no. 5717665, pp. 5438-5443. Cited 39 times. ISBN: 978-142447745-6 doi: 10.1109/CDC.2010.5717665Al-Tamimi, A., Lewis, F.L., Abu-Khalaf, M. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof (Open Access) (2008) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38 (4), pp. 943-949. Cited 820 times. doi: 10.1109/TSMCB.2008.926614Kovatchev, B.P., Breton, M., Dalla Man, C., Cobelli, C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes (Open Access) (2009) Journal of Diabetes Science and Technology, 3 (1), pp. 44-55. Cited 595 times. http://dst.sagepub.com/content/by/year doi: 10.1177/193229680900300106Dalla Man, C., Micheletto, F., Lv, D., Breton, M., Kovatchev, B., Cobelli, C. The UVA/PADOVA type 1 diabetes simulator: New features (Open Access) (2014) Journal of Diabetes Science and Technology, 8 (1), pp. 26-34. Cited 496 times. doi: 10.1177/1932296813514502Chang, F.-J., Chiang, Y.-M., Chang, L.-C. Multi-step-ahead neural networks for flood forecasting (2007) Hydrological Sciences Journal, 52 (1), pp. 114-130. Cited 115 times. doi: 10.1623/hysj.52.1.114Takagi, T., Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control (1985) IEEE Transactions on Systems, Man and Cybernetics, SMC-15 (1), pp. 116-132. Cited 16605 times. doi: 10.1109/TSMC.1985.6313399Lopes Souto, D., Lopes Rosado, E. Use of carb counting in the dietary treatment of diabetes mellitus (Open Access) (2010) Nutricion Hospitalaria, 25 (1), pp. 18-25. Cited 17 times. http://www.nutricionhospitalaria.com/mostrarfile.asp?ID=4324 doi: 10.3305/nh.2010.25.1.4324Institute of Medicine, D. Summary tables, dietary reference intakes (2005) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids, pp. 1319-1331. Cited 35 times. Elsevier Washington, D.C., U.S. [Ch. Summary Ta]Previato, H.D.R.D.A. Carbohydrate counting in diabetes (2016) Nutr Food Technol: Open Access, 2 (2), pp. 1-4. Cited 2 times.Nutrition recommendations and interventions for diabetes: A position statement of the American Diabetes Association (2008) Diabetes Care, 31 (SUPPL. 1), pp. S61-S78. Cited 1291 times. http://care.diabetesjournals.org/cgi/reprint/31/Supplement_1/S61 doi: 10.2337/dc08-S061Association, A.D. All about carbohydrate counting (2009) . Cited 4 times. American Diabetes Association URL https://professional.diabetes.org/sites/professional.diabetes.org/files/media/All_About_Carbohydrate_Counting.pdfCinar, A. Artificial Pancreas Systems: An Introduction to the Special Issue (Open Access) (2018) IEEE Control Systems, 38 (1), art. no. 8263484, pp. 26-29. Cited 31 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5488303 doi: 10.1109/MCS.2017.2766321http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction.pdfTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction.pdfapplication/pdf177231https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/1/Treatment%20for%20T1DM%20patients%20by%20a%20neuro-fuzzy%20inverse%20optimal%20controller%20including%20multi-step%20prediction.pdf41a0170a5948df19a46271c5c8fa112aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction.pdf.txtTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction.pdf.txtExtracted texttext/plain12926https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/4/Treatment%20for%20T1DM%20patients%20by%20a%20neuro-fuzzy%20inverse%20optimal%20controller%20including%20multi-step%20prediction.pdf.txt5c9dc4d3b06969b237b3c336204ddec3MD54THUMBNAILTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction.pdf.jpgTreatment for T1DM patients by a neuro-fuzzy inverse optimal controller including multi-step prediction.pdf.jpgGenerated Thumbnailimage/jpeg8475https://repositorio.utb.edu.co/bitstream/20.500.12585/12172/5/Treatment%20for%20T1DM%20patients%20by%20a%20neuro-fuzzy%20inverse%20optimal%20controller%20including%20multi-step%20prediction.pdf.jpgcd8d657afa2184e63466b97bbcaa36e3MD5520.500.12585/12172oai:repositorio.utb.edu.co:20.500.12585/121722023-07-20 00:17:48.697Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=