Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage

Distributed generation and energy storage technologies have helped SmartGrid projects gain great momentum over the last decade. However, despite a large number of pilot and demonstration projects, low-level information is often unavailable. Therefore, tools for defining and building different operat...

Full description

Autores:
Dominguez, J.A.
Rueda, L.
Henao, N.
Agbossou, K.
Campillo, J.
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12122
Acceso en línea:
https://hdl.handle.net/20.500.12585/12122
Palabra clave:
Co-Simulation;
Smart Grid;
Cyber Physical System
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_5098b4bd356efd812776496bea4d7e62
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12122
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
title Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
spellingShingle Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
Co-Simulation;
Smart Grid;
Cyber Physical System
LEMB
title_short Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
title_full Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
title_fullStr Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
title_full_unstemmed Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
title_sort Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage
dc.creator.fl_str_mv Dominguez, J.A.
Rueda, L.
Henao, N.
Agbossou, K.
Campillo, J.
dc.contributor.author.none.fl_str_mv Dominguez, J.A.
Rueda, L.
Henao, N.
Agbossou, K.
Campillo, J.
dc.subject.keywords.spa.fl_str_mv Co-Simulation;
Smart Grid;
Cyber Physical System
topic Co-Simulation;
Smart Grid;
Cyber Physical System
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Distributed generation and energy storage technologies have helped SmartGrid projects gain great momentum over the last decade. However, despite a large number of pilot and demonstration projects, low-level information is often unavailable. Therefore, tools for defining and building different operation scenarios are required. These tools can facilitate adopting novel approaches to multi-domain energy management. This paper proposes a distributed, flexible co-simulation framework to integrate simulators from separate domains and platforms. Particularly, the proposed scheme enables the development of hybrid thermal-electric systems for smart buildings. In this study, an object-oriented approach to modeling electrical thermal storage (ETS) units is also suggested. The evaluation process is carried out using real-world data. A case study is practiced by designing a residential agent that performs model predictive control (MPC) of residential heating load in the presence of ETS. The results show that proper integration of ETS into Home Energy Management Systems (HEMSs) can achieve economic savings of up to 45 %. The findings of this study demonstrate ETS's high potential for reducing customer bills while satisfying users' comfort. Furthermore, they recommend practical strategies for short-term planning of smart grids by increasing their flexibility based on ETS-integrated Demand Response (DR) programs. © 2022 IEEE.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-18T19:22:50Z
dc.date.available.none.fl_str_mv 2023-07-18T19:22:50Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Dominguez, J. A., Rueda, L., Henao, N., Agbossou, K., & Campillo, J. (2022, October). Distributed co-simulation for smart homes energy management in the presence of electrical thermal storage. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12122
dc.identifier.doi.none.fl_str_mv 10.1109/IECON49645.2022.9969092
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Dominguez, J. A., Rueda, L., Henao, N., Agbossou, K., & Campillo, J. (2022, October). Distributed co-simulation for smart homes energy management in the presence of electrical thermal storage. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE.
10.1109/IECON49645.2022.9969092
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12122
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv IECON Proceedings (Industrial Electronics Conference)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/1/Distributed%20Co-simulation%20for%20Smart%20Homes%20Energy%20Management%20in%20the%20Presence%20of%20Electrical%20Thermal%20Storage%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/4/Distributed%20Co-simulation%20for%20Smart%20Homes%20Energy%20Management%20in%20the%20Presence%20of%20Electrical%20Thermal%20Storage%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/5/Distributed%20Co-simulation%20for%20Smart%20Homes%20Energy%20Management%20in%20the%20Presence%20of%20Electrical%20Thermal%20Storage%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.jpg
bitstream.checksum.fl_str_mv 5b793735a6a5361b1c3de3728b8e15e3
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
effa575c94ca398a165ca5fc7e92214b
cf0153d05022cafee95db24c105e824e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021646405599232
spelling Dominguez, J.A.e13f2e38-5b17-430f-b808-36bd4f35d061Rueda, L.d70e4924-9bb1-46e4-961a-99b1fa18caf3Henao, N.273f0cef-d7d4-4cba-aa2e-006e03833f36Agbossou, K.9a60530a-3b36-4aac-914d-22214bd4004aCampillo, J.8c4725e9-5e97-40df-b9ae-f67c73617ff32023-07-18T19:22:50Z2023-07-18T19:22:50Z20222023Dominguez, J. A., Rueda, L., Henao, N., Agbossou, K., & Campillo, J. (2022, October). Distributed co-simulation for smart homes energy management in the presence of electrical thermal storage. In IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society (pp. 1-6). IEEE.https://hdl.handle.net/20.500.12585/1212210.1109/IECON49645.2022.9969092Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarDistributed generation and energy storage technologies have helped SmartGrid projects gain great momentum over the last decade. However, despite a large number of pilot and demonstration projects, low-level information is often unavailable. Therefore, tools for defining and building different operation scenarios are required. These tools can facilitate adopting novel approaches to multi-domain energy management. This paper proposes a distributed, flexible co-simulation framework to integrate simulators from separate domains and platforms. Particularly, the proposed scheme enables the development of hybrid thermal-electric systems for smart buildings. In this study, an object-oriented approach to modeling electrical thermal storage (ETS) units is also suggested. The evaluation process is carried out using real-world data. A case study is practiced by designing a residential agent that performs model predictive control (MPC) of residential heating load in the presence of ETS. The results show that proper integration of ETS into Home Energy Management Systems (HEMSs) can achieve economic savings of up to 45 %. The findings of this study demonstrate ETS's high potential for reducing customer bills while satisfying users' comfort. Furthermore, they recommend practical strategies for short-term planning of smart grids by increasing their flexibility based on ETS-integrated Demand Response (DR) programs. © 2022 IEEE.6 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2IECON Proceedings (Industrial Electronics Conference)Distributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storageinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Co-Simulation;Smart Grid;Cyber Physical SystemLEMBCartagena de IndiasAgency, I.E. World Energy Outlook 2019 (2019) Tech. Rep. Cited 1387 times.(2021) Global Energy Review 2021, p. 36. Cited 650 times.Mancarella, P. MES (multi-energy systems): An overview of concepts and evaluation models (2014) Energy, 65, pp. 1-17. Cited 997 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2013.10.041Schiera, D.S., Minuto, F.D., Bottaccioli, L., Borchiellini, R., Lanzini, A. Analysis of Rooftop Photovoltaics Diffusion in Energy Community Buildings by a Novel GIS- and Agent-Based Modeling Co-Simulation Platform (2019) IEEE Access, 7, art. no. 8756277, pp. 93404-93432. Cited 35 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2019.2927446Bharati, A.K., Ajjarapu, V. A Scalable Multi-Timescale T&D Co-Simulation Framework using HELICS (2021) 2021 IEEE Texas Power and Energy Conference, TPEC 2021, art. no. 9384985. Cited 7 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9384868 ISBN: 978-172818612-2 doi: 10.1109/TPEC51183.2021.9384985Zhang, J., Daily, J., Mast, R.A., Palmintier, B., Krishnamurthy, D., Elgindy, T., Florita, A., (...), Hodge, B.-M. Development of HELICS-based high-performance cyber-physical co-simulation framework for distributed energy resources applications (2020) 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, SmartGridComm 2020, art. no. 9302977. Cited 4 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9302911 ISBN: 978-172816127-3 doi: 10.1109/SmartGridComm47815.2020.9302977Nicolai, A., Paepcke, A. (2017) Co-Simulation between Detailed Building Energy Performance Simulation and Modelica Hvac Component Models, p. 72. JulKwak, Y., Huh, J.-H., Jang, C. Development of a model predictive control framework through real-time building energy management system data (2015) Applied Energy, 155, pp. 1-13. Cited 81 times. http://www.elsevier.com/inca/publications/store/4/0/5/8/9/1/index.htt doi: 10.1016/j.apenergy.2015.05.096Hong, T., Sun, H., Chen, Y., Taylor-Lange, S.C., Yan, D. An occupant behavior modeling tool for co-simulation (2016) Energy and Buildings, 117, pp. 272-281. Cited 142 times. doi: 10.1016/j.enbuild.2015.10.033Cutler, D., Kwasnik, T., Balamurugan, S., Elgindy, T., Swaminathan, S., Maguire, J., Christensen, D. Co-simulation of transactive energy markets: A framework for market testing and evaluation (2021) International Journal of Electrical Power and Energy Systems, 128, art. no. 106664. Cited 6 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106664Awad, A., Bazan, P., German, R. A House Appliances-Level Co-simulation Framework for Smart Grid Applications (2019) EAI/Springer Innovations in Communication and Computing, pp. 303-317. springer.com/series/15427 doi: 10.1007/978-3-319-92378-9_19Gusain, D., Cvetković, M., Palensky, P. Simplifying multi-energy system co-simulations using ENERGYSIM (Open Access) (2022) SoftwareX, 18, art. no. 101021. http://www.journals.elsevier.com/softwarex/ doi: 10.1016/j.softx.2022.101021Erdogan, N., Kucuksari, S., Cali, U. Co-Simulation of Optimal EVSE and Techno-Economic System Design Models for Electrified Fleets (2022) IEEE Access, 10, pp. 18988-18997. Cited 7 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2022.3150359Summers, A., Goes, C., Calzada, D., Jacobs, N., Hossain-Mckenzie, S., Mao, Z. Towards Cyber-Physical Special Protection Schemes: Design and Development of a Co-Simulation Testbed Leveraging SCEPTRE™ (Open Access) (2022) 2022 IEEE Power and Energy Conference at Illinois, PECI 2022. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9744016 ISBN: 978-166540229-3 doi: 10.1109/PECI54197.2022.9744043Zafar, U., Bayhan, S., Sanfilippo, A. Home Energy Management System Concepts, Configurations, and Technologies for the Smart Grid (Open Access) (2020) IEEE Access, 8, art. no. 9126780, pp. 119271-119286. Cited 64 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3005244Beaudin, M., Zareipour, H. Home energy management systems: A review of modelling and complexity (Open Access) (2015) Renewable and Sustainable Energy Reviews, 45, pp. 318-335. Cited 319 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2015.01.046Solanki, B.V., Sauter, P.S., Canizares, C.A., Bhattacharya, K., Hohmann, S. (2017) Electric Thermal Storage System Impact on Northern Communities' Microgrids. Cited 2 times. https://publikationen.bibliothek.kit.edu/1000073509Wong, S., Pinard, J.-P. Opportunities for Smart Electric Thermal Storage on Electric Grids with Renewable Energy (2017) IEEE Transactions on Smart Grid, 8 (2), art. no. 7419882, pp. 1014-1022. Cited 41 times. doi: 10.1109/TSG.2016.2526636Fritzson, P. Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach (Open Access) (2014) Principles of Object Oriented Modeling and Simulation with Modelica 3.3: A Cyber-Physical Approach, 9781118859124, pp. 1-1223. Cited 225 times. http://www.wiley.com/remtitle.cgi?isbn=111885912X ISBN: 978-111898916-6; 978-111885912-4 doi: 10.1002/9781118989166Cisek, P., Taler, D. Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS) (Open Access) (2019) Energy, 173, pp. 755-771. Cited 14 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2019.02.096Devia, W., Agbossou, K., Cardenas, A. An evolutionary approach to modeling and control of space heating and thermal storage systems (2021) Energy and Buildings, 234, art. no. 110674. Cited 8 times. https://www.journals.elsevier.com/energy-and-buildings doi: 10.1016/j.enbuild.2020.110674Diamond, S., Boyd, S. CVXPY: A Python-Embedded Modeling Language for Convex Optimization, p. 5. Cited 31 times.http://purl.org/coar/resource_type/c_6501ORIGINALDistributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage _ IEEE Conference Publication _ IEEE Xplore.pdfDistributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage _ IEEE Conference Publication _ IEEE Xplore.pdfapplication/pdf138190https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/1/Distributed%20Co-simulation%20for%20Smart%20Homes%20Energy%20Management%20in%20the%20Presence%20of%20Electrical%20Thermal%20Storage%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf5b793735a6a5361b1c3de3728b8e15e3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTDistributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage _ IEEE Conference Publication _ IEEE Xplore.pdf.txtDistributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage _ IEEE Conference Publication _ IEEE Xplore.pdf.txtExtracted texttext/plain2782https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/4/Distributed%20Co-simulation%20for%20Smart%20Homes%20Energy%20Management%20in%20the%20Presence%20of%20Electrical%20Thermal%20Storage%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.txteffa575c94ca398a165ca5fc7e92214bMD54THUMBNAILDistributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage _ IEEE Conference Publication _ IEEE Xplore.pdf.jpgDistributed Co-simulation for Smart Homes Energy Management in the Presence of Electrical Thermal Storage _ IEEE Conference Publication _ IEEE Xplore.pdf.jpgGenerated Thumbnailimage/jpeg6318https://repositorio.utb.edu.co/bitstream/20.500.12585/12122/5/Distributed%20Co-simulation%20for%20Smart%20Homes%20Energy%20Management%20in%20the%20Presence%20of%20Electrical%20Thermal%20Storage%20_%20IEEE%20Conference%20Publication%20_%20IEEE%20Xplore.pdf.jpgcf0153d05022cafee95db24c105e824eMD5520.500.12585/12122oai:repositorio.utb.edu.co:20.500.12585/121222023-07-19 00:19:14.353Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=