Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm

In this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear program...

Full description

Autores:
Martínez-Gil, John Fernando
Moyano-García, Nicolas Alejandro
Montoya, Oscar Danilo
Alarcon-Villamil, Jorge Alexander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10401
Acceso en línea:
https://hdl.handle.net/20.500.12585/10401
https://doi.org/10.3390/computation9070080
Palabra clave:
Conductor selection
Mathematical optimization
Distribution systems
Three-phase
Power flow
Energy losses
Vortex search algorithm
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_4f224199d686263e70c2619507f41839
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10401
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
title Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
spellingShingle Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
Conductor selection
Mathematical optimization
Distribution systems
Three-phase
Power flow
Energy losses
Vortex search algorithm
LEMB
title_short Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
title_full Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
title_fullStr Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
title_full_unstemmed Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
title_sort Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm
dc.creator.fl_str_mv Martínez-Gil, John Fernando
Moyano-García, Nicolas Alejandro
Montoya, Oscar Danilo
Alarcon-Villamil, Jorge Alexander
dc.contributor.author.none.fl_str_mv Martínez-Gil, John Fernando
Moyano-García, Nicolas Alejandro
Montoya, Oscar Danilo
Alarcon-Villamil, Jorge Alexander
dc.subject.keywords.es_CO.fl_str_mv Conductor selection
Mathematical optimization
Distribution systems
Three-phase
Power flow
Energy losses
Vortex search algorithm
topic Conductor selection
Mathematical optimization
Distribution systems
Three-phase
Power flow
Energy losses
Vortex search algorithm
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear programming (MINLP) structure is used. As an objective function, minimization of the investment costs in conductors together with the technical losses of the network for a study period of one year is considered. Additionally, the model will be implemented in balanced and unbalanced test systems and with variations in the connection of their loads, i.e., ∆− and Y−connections. To evaluate the costs of the energy losses, a classical backward/forward three-phase power-flow method is implemented. Two test systems used in the specialized literature were employed, which comprise 8 and 27 nodes with radial structures in medium voltage levels. All computational implementations were developed in the MATLAB programming environment, and all results were evaluated in DigSILENT software to verify the effectiveness and the proposed three-phase unbalanced powerflow method. Comparative analyses with classical and Chu & Beasley genetic algorithms, tabu search algorithm, and exact MINLP approaches demonstrate the efficiency of the proposed optimization approach regarding the final value of the objective function
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-07-18
dc.date.accessioned.none.fl_str_mv 2022-01-24T21:21:00Z
dc.date.available.none.fl_str_mv 2022-01-24T21:21:00Z
dc.date.submitted.none.fl_str_mv 2022-01-24
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.es_CO.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.es_CO.fl_str_mv Martínez-Gil, J.F.; Moyano-Garcia, N.A.; Montoya, O.D.; Alarcon-Villamil, J.A. Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Computation 2021, 9, 80. https://doi.org/10.3390/computation9070080
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10401
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/computation9070080
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Martínez-Gil, J.F.; Moyano-Garcia, N.A.; Montoya, O.D.; Alarcon-Villamil, J.A. Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Computation 2021, 9, 80. https://doi.org/10.3390/computation9070080
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10401
https://doi.org/10.3390/computation9070080
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.es_CO.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 32 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.source.es_CO.fl_str_mv Computation - vol. 9 n° 7 2021
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/1/%5bArt.%2031%5d%20Optimal%20Selection%20of%20Conductors%20in_Oscar%20Danilo%20Montoya.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/4/%5bArt.%2031%5d%20Optimal%20Selection%20of%20Conductors%20in_Oscar%20Danilo%20Montoya.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/5/%5bArt.%2031%5d%20Optimal%20Selection%20of%20Conductors%20in_Oscar%20Danilo%20Montoya.pdf.jpg
bitstream.checksum.fl_str_mv 88d44d7ffd58fab9db19b78432b5715e
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
4c8abd3ec5d59e24ab8104876b185687
c465ee6cd46650e888e674f80ffd12cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021646451736576
spelling Martínez-Gil, John Fernando08bb4179-a169-40f3-b930-a4880d07fd01Moyano-García, Nicolas Alejandro659ff6ae-6e0f-4f6f-a103-4e591c87cb72Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Alarcon-Villamil, Jorge Alexanderafeab025-85c3-471d-9d8c-685a95aa3eb52022-01-24T21:21:00Z2022-01-24T21:21:00Z2021-07-182022-01-24Martínez-Gil, J.F.; Moyano-Garcia, N.A.; Montoya, O.D.; Alarcon-Villamil, J.A. Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Computation 2021, 9, 80. https://doi.org/10.3390/computation9070080https://hdl.handle.net/20.500.12585/10401https://doi.org/10.3390/computation9070080Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear programming (MINLP) structure is used. As an objective function, minimization of the investment costs in conductors together with the technical losses of the network for a study period of one year is considered. Additionally, the model will be implemented in balanced and unbalanced test systems and with variations in the connection of their loads, i.e., ∆− and Y−connections. To evaluate the costs of the energy losses, a classical backward/forward three-phase power-flow method is implemented. Two test systems used in the specialized literature were employed, which comprise 8 and 27 nodes with radial structures in medium voltage levels. All computational implementations were developed in the MATLAB programming environment, and all results were evaluated in DigSILENT software to verify the effectiveness and the proposed three-phase unbalanced powerflow method. Comparative analyses with classical and Chu & Beasley genetic algorithms, tabu search algorithm, and exact MINLP approaches demonstrate the efficiency of the proposed optimization approach regarding the final value of the objective function32 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computation - vol. 9 n° 7 2021Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Conductor selectionMathematical optimizationDistribution systemsThree-phasePower flowEnergy lossesVortex search algorithmLEMBCartagena de IndiasMontoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. doi:10.3390/app11052175.Fatima, S.; Püvi, V.; Arshad, A.; Pourakbari-Kasmaei, M.; Lehtonen, M. Comparison of Economical and Technical Photovoltaic Hosting Capacity Limits in Distribution Networks. Energies 2021, 14, 2405. doi:10.3390/en14092405Sorrentino, E.; Gupta, N.G. Summary of useful concepts about the coordination of directional overcurrent protections. CSEE J. Power Energy Syst. 2019. doi:10.17775/cseejpes.2018.01220Paz, M.C.R.; Ferraz, R.G.; Bretas, A.S.; Leborgne, R.C. System unbalance and fault impedance effect on faulted distribution networks. Comput. Math. Appl. 2010, 60, 1105–1114. doi:10.1016/j.camwa.2010.03.067.Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282. doi:10.3390/en14051282.Lavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–180. doi:10.1109/tpwrs.2011.2161349.Montoya., O.D.; Grajales, A.; Hincapié, R.A.; Granada, M. A new approach to solve the distribution system planning problem considering automatic reclosers. Ingeniare. Revista Chilena de Ingeniería 2017, 25, 415–429. doi:10.4067/s0718-33052017000300415.Wang, Z.; Liu, H.; Yu, D.; Wang, X.; Song, H. A practical approach to the conductor size selection in planning radial distribution systems. IEEE Trans. Power Deliv. 2000, 15, 350–354. doi:10.1109/61.847272Zhao, Z.; Mutale, J. Optimal Conductor Size Selection in Distribution Networks with High Penetration of Distributed Generation Using Adaptive Genetic Algorithm. Energies 2019, 12, 2065. doi:10.3390/en12112065.Montoya, O.; Grajales, A.; Hincapié, R. Optimal selection of conductors in distribution systems using tabu search algorithm. Ingeniare. Revista Chilena de Ingeniería 2018, 26, 283–295. doi:10.4067/s0718-33052018000200283.Ismael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y. Optimal selection of conductors in Egyptian radial distribution systems using sine-cosine optimization algorithm. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Hibbingum, Egypt, 19–21 December 2017; IEEE: Piscataway, NJ, USA, 2017. doi:10.1109/mepcon.2017.8301170.Joshi, D.; Burada, S.; Mistry, K.D. Distribution system planning with optimal conductor selection. In Proceedings of the 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India, 26–27 October 2017, IEEE: Piscataway, NJ, USA, 2017. doi:10.1109/rdcape.2017.8358279.Ismael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y.; Zobaa, A.F. Practical Considerations for Optimal Conductor Reinforcement and Hosting Capacity Enhancement in Radial Distribution Systems. IEEE Access 2018, 6, 27268–27277. doi:10.1109/access.2018.2835165.Mandal, S.; Pahwa, A. Optimal selection of conductors for distribution feeders. IEEE Trans. Power Syst. 2002, 17, 192–197. doi:10.1109/59.982213.Falaghi, H.; Singh, C. Optimal Conductor Size Selection in Distribution Systems with Wind Power Generation. In Green Energy and Technology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 25–51. doi:10.1007/978-3-642-13250-6_2.Legha, M.; Javaheri, H.; Legha, M. Optimal Conductor Selection in Radial Distribution Systems for Productivity Improvement Using Genetic Algorithm. Iraqi J. Electr. Electron. Eng. 2013, 9, 29–35. doi:10.37917/ijeee.9.1.3Rao, R.S.; Satish, K.; Narasimham, S.V.L. Optimal Conductor Size Selection in Distribution Systems Using the Harmony Search Algorithm with a Differential Operator. Electr. Power Compon. Syst. 2011, 40, 41–56. doi:10.1080/15325008.2011.621922.Lopez, L.; Hincapié, R.A.; Gallego, R.A. Planeamiento multi-objetivo de sistemas de distribución usando un algoritmo evolutivo NSGA-II. Revista Escuela de Ingeniería de Antioquía 2011, 15, 141–151.Khalil, T.M.; Gorpinich, A.V. Optimal conductor selection and capacitor placement for loss reduction of radial distribution systems by selective particle swarm optimization. In Proceedings of the 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 27–29 November 2012; IEEE: Piscataway, NJ, USA 2012. doi:10.1109/icces.2012.6408516.Legha, M.M.; Noormohamadi, H.; Barkhori, A. Optimal conductor selection in radial distribution using bacterial foraging algorithm and comparison with ICA method WALIA J. 2015. 31, 37–43.Abdelaziz, A.Y.; Fathy, A. A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Eng. Sci. Technol. Int. J. 2017, 20, 391–402. doi:10.1016/j.jestch.2017.02.004Abdelaziz, A.Y.; Fathy, A. A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Eng. Sci. Technol. Int. J. 2017, 20, 391–402. doi:10.1016/j.jestch.2017.02.004Hassen, S.Z.S.; Jahmeerbacus, M.I. Customer Loss Allocation Reduction Using Optimal Conductor Selection in Electrical Distribution System. In Emerging Trends in Electrical, Electronic and Communications Engineering; Springer: Singapore, 2017; Volume 416, pp. 372–379. doi:10.1007/978-3-319-52171-8.Montoya, O.D.; Garces, A.; Castro, C.A. Optimal Conductor Size Selection in Radial Distribution Networks Using a MixedInteger Non-Linear Programming Formulation. IEEE Latin Am. Trans. 2018, 16, 2213–2220. doi:10.1109/tla.2018.8528237Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. On the mathematical modeling for optimal selecting of calibers of conductors in DC radial distribution networks: An MINLP approach. Electr. Power Syst. Res. 2021, 194, 107072. doi:10.1016/j.epsr.2021.107072.Ismael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y. Optimal conductor selection in radial distribution systems using whale optimization algorithm. J. Eng. Sci. Technol. 2017, 14, 87–107Kumari, M.; Singh, V.R.; Ranjan, R. Optimal selection of conductor in RDS considering weather condition. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018, New Delhi, India, 28–29 September 2018; pp. 647–651. doi:10.1109/GUCON.2018.8675051.Mohanty, S.; Kasturi, K.; Nayak, M.R. Application of ER-WCA to Determine Conductor Size for Performance Improvement in Distribution System. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021, pp. 1–5. doi:10.1109/ICAECT49130.2021.9392495.Paz-Rodríguez, A.; Castro-Ordoñez, J.F.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm. Appl. Sci. 2021, 11, 4418. doi:10.3390/app11104418.Dogan, B.; Yuksel, A. Analog filter group delay optimization using the Vortex Search algorithm. In Proceedings of the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey, 16–19 May 2015. doi:10.1109/siu.2015.7129815Serna-Suárez, I.D. A Convex Approximation for Optimal DER Scheduling on Unbal-anced Power Distribution Networks. DYNA 2019, 86, 281–291. doi:10.15446/dyna.v86n208.72886Wang, C.; Liu, P.; Zhang, T.; Sun, J. The Adaptive Vortex Search Algorithm of Optimal Path Planning for Forest Fire Rescue UAV. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference, IAEAC 2018, Chongqing, China, 12–14 October 2018; pp. 400–403. doi:10.1109/IAEAC.2018.8577733Montoya, O.D.; Gil-Gonzalez, W.; Grisales-Norena, L.F. Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks with CPLs. IEEE Trans. Circ. Syst. II Express Briefs 2020, 67, 1439–1443. doi:10.1109/TCSII.2019.2938530Shen, T.; Li, Y.; Xiang, J. A graph-based power flow method for balanced distribution systems. Energies 2018, 11, 511. doi:10.3390/en11030511Castilho Neto, J.; Cossi, A.M. Alocação de Cabos em Redes de Distribuição de Energia Elétrica de Média Tensão (MT) Utilizando Algoritmo Chu-Beasley. In Simpósio Brasileiro de Sistemas Eletricos (SBSE). Foz do Iguacu, Brasil, 22–25 April. 2014; 1–6.Soroudi, A. Multi-Period Optimal Power Flow. In Alireza Soroudi Power System Optimization Modeling in GAMS; Springer: Singapore, 2019; Chapter 6, pp. 2017–2020.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL[Art. 31] Optimal Selection of Conductors in_Oscar Danilo Montoya.pdf[Art. 31] Optimal Selection of Conductors in_Oscar Danilo Montoya.pdfapplication/pdf456911https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/1/%5bArt.%2031%5d%20Optimal%20Selection%20of%20Conductors%20in_Oscar%20Danilo%20Montoya.pdf88d44d7ffd58fab9db19b78432b5715eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT[Art. 31] Optimal Selection of Conductors in_Oscar Danilo Montoya.pdf.txt[Art. 31] Optimal Selection of Conductors in_Oscar Danilo Montoya.pdf.txtExtracted texttext/plain90447https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/4/%5bArt.%2031%5d%20Optimal%20Selection%20of%20Conductors%20in_Oscar%20Danilo%20Montoya.pdf.txt4c8abd3ec5d59e24ab8104876b185687MD54THUMBNAIL[Art. 31] Optimal Selection of Conductors in_Oscar Danilo Montoya.pdf.jpg[Art. 31] Optimal Selection of Conductors in_Oscar Danilo Montoya.pdf.jpgGenerated Thumbnailimage/jpeg100796https://repositorio.utb.edu.co/bitstream/20.500.12585/10401/5/%5bArt.%2031%5d%20Optimal%20Selection%20of%20Conductors%20in_Oscar%20Danilo%20Montoya.pdf.jpgc465ee6cd46650e888e674f80ffd12cbMD5520.500.12585/10401oai:repositorio.utb.edu.co:20.500.12585/104012022-01-25 02:30:42.513Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=