Polylactic acid effectively reinforced with reduced graphitic oxide

The present study was developed to reinforce a thermoplastic matrix with carbonaceous material to improve its thermal and mechanical properties. Composite materials formed from the homogenization of polylactic acid (PLA) and reduced graphitic oxide (RGO) were synthesized and characterized, reinforce...

Full description

Autores:
De La Cruz Natera, Alejandra
Cordero García, Adriana
Restrepo Betancourt, Juan
Arias Tapia, Mary Judith
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12365
Acceso en línea:
https://hdl.handle.net/20.500.12585/12365
Palabra clave:
Composite
Mechanical properties
Polylactic acid
Reduced graphitic oxide
Reinforcement
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_4d818ffee3ed00a0bdb70c07b1bd271c
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12365
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Polylactic acid effectively reinforced with reduced graphitic oxide
title Polylactic acid effectively reinforced with reduced graphitic oxide
spellingShingle Polylactic acid effectively reinforced with reduced graphitic oxide
Composite
Mechanical properties
Polylactic acid
Reduced graphitic oxide
Reinforcement
title_short Polylactic acid effectively reinforced with reduced graphitic oxide
title_full Polylactic acid effectively reinforced with reduced graphitic oxide
title_fullStr Polylactic acid effectively reinforced with reduced graphitic oxide
title_full_unstemmed Polylactic acid effectively reinforced with reduced graphitic oxide
title_sort Polylactic acid effectively reinforced with reduced graphitic oxide
dc.creator.fl_str_mv De La Cruz Natera, Alejandra
Cordero García, Adriana
Restrepo Betancourt, Juan
Arias Tapia, Mary Judith
dc.contributor.author.none.fl_str_mv De La Cruz Natera, Alejandra
Cordero García, Adriana
Restrepo Betancourt, Juan
Arias Tapia, Mary Judith
dc.subject.keywords.spa.fl_str_mv Composite
Mechanical properties
Polylactic acid
Reduced graphitic oxide
Reinforcement
topic Composite
Mechanical properties
Polylactic acid
Reduced graphitic oxide
Reinforcement
description The present study was developed to reinforce a thermoplastic matrix with carbonaceous material to improve its thermal and mechanical properties. Composite materials formed from the homogenization of polylactic acid (PLA) and reduced graphitic oxide (RGO) were synthesized and characterized, reinforcement of the polymer's thermomechanical properties and the adequate homogeneity ratio in the dispersion of the composite material were studied. Graphitic oxide (GO) was synthesized by the modified Hummers method, followed by thermal exfoliation. The chemical composition and the structure of RGO were studied by infrared (FT-IR) and Raman spectroscopies, respectively. PLA composites with different RGO contents (2 and 3% by weight) were prepared and compared in terms of distribution of RGO in the matrix and morphology, using scanning electron microscopy. The thermal stability of the composites was determined through thermogravimetric analysis. Torque of the different composites was measured, which increased at 21%; the tensile test showed an improvement in the mechanical parameters of the composites because the RGO favors the rigidity of the composite. In addition, the oxygenated functional groups present in the RGO allowed a more significant interaction with the PLA matrix, which results in an effective reinforcement of the mechanical properties of the composite material
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-09-01
dc.date.accessioned.none.fl_str_mv 2023-07-21T20:45:56Z
dc.date.available.none.fl_str_mv 2023-07-21T20:45:56Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv De La Cruz Natera, A., Cordero García, A., Restrepo Betancourt, J., Arias Tapia, M. & Vargas Ceballos, O. (2022). Polylactic acid effectively reinforced with reduced graphitic oxide. Journal of Polymer Engineering, 42(8), 736-743. https://doi.org/10.1515/polyeng-2021-0363
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12365
dc.identifier.doi.none.fl_str_mv 10.1515/polyeng-2021-0363
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv De La Cruz Natera, A., Cordero García, A., Restrepo Betancourt, J., Arias Tapia, M. & Vargas Ceballos, O. (2022). Polylactic acid effectively reinforced with reduced graphitic oxide. Journal of Polymer Engineering, 42(8), 736-743. https://doi.org/10.1515/polyeng-2021-0363
10.1515/polyeng-2021-0363
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12365
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 8 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Journal of Polymer Engineering - Vol. 42 No. 8 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/1/Polylactic%20acid%20effectively%20reinforced%20with%20reduced%20graphitic%20oxide.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/4/Polylactic%20acid%20effectively%20reinforced%20with%20reduced%20graphitic%20oxide.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/5/Polylactic%20acid%20effectively%20reinforced%20with%20reduced%20graphitic%20oxide.pdf.jpg
bitstream.checksum.fl_str_mv aa6b39236326d7130bd1e66e9e7908b1
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
fc0fff86a2673a6c9156359112a9e2c5
df919243e654c6f22add54e835f63ef5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021621696954368
spelling De La Cruz Natera, Alejandradcaeb277-77f0-434f-9727-3accf99ada0aCordero García, Adriana5d97dcd5-0e6a-4f01-8c6a-e0c8bd3727c3Restrepo Betancourt, Juan8de28b49-0bd4-4d44-839d-5f0542c5a306Arias Tapia, Mary Judith239f5c16-2ee2-494b-8708-8d3702dc094c2023-07-21T20:45:56Z2023-07-21T20:45:56Z2022-09-012023-07De La Cruz Natera, A., Cordero García, A., Restrepo Betancourt, J., Arias Tapia, M. & Vargas Ceballos, O. (2022). Polylactic acid effectively reinforced with reduced graphitic oxide. Journal of Polymer Engineering, 42(8), 736-743. https://doi.org/10.1515/polyeng-2021-0363https://hdl.handle.net/20.500.12585/1236510.1515/polyeng-2021-0363Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe present study was developed to reinforce a thermoplastic matrix with carbonaceous material to improve its thermal and mechanical properties. Composite materials formed from the homogenization of polylactic acid (PLA) and reduced graphitic oxide (RGO) were synthesized and characterized, reinforcement of the polymer's thermomechanical properties and the adequate homogeneity ratio in the dispersion of the composite material were studied. Graphitic oxide (GO) was synthesized by the modified Hummers method, followed by thermal exfoliation. The chemical composition and the structure of RGO were studied by infrared (FT-IR) and Raman spectroscopies, respectively. PLA composites with different RGO contents (2 and 3% by weight) were prepared and compared in terms of distribution of RGO in the matrix and morphology, using scanning electron microscopy. The thermal stability of the composites was determined through thermogravimetric analysis. Torque of the different composites was measured, which increased at 21%; the tensile test showed an improvement in the mechanical parameters of the composites because the RGO favors the rigidity of the composite. In addition, the oxygenated functional groups present in the RGO allowed a more significant interaction with the PLA matrix, which results in an effective reinforcement of the mechanical properties of the composite material8 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Polymer Engineering - Vol. 42 No. 8 (2022)Polylactic acid effectively reinforced with reduced graphitic oxideinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1CompositeMechanical propertiesPolylactic acidReduced graphitic oxideReinforcementCartagena de IndiasTsuji, H., Echizen, Y., Nishimura, Y. Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(ε-caprolactone) (2006) Polymer Degradation and Stability, 91 (5), pp. 1128-1137. Cited 144 times. doi: 10.1016/j.polymdegradstab.2005.07.007Auras, R., Lim, L.-T., Selke, S.E.M., Tsuji, H. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications (2010) Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications. Cited 906 times. http://onlinelibrary.wiley.com/book/10.1002/9780470649848 ISBN: 978-047029366-9 doi: 10.1002/9780470649848Oksman, K., Skrifvars, M., Selin, J.-F. Natural fibres as reinforcement in polylactic acid (PLA) composites (2003) Composites Science and Technology, 63 (9), pp. 1317-1324. Cited 1286 times. http://www.journals.elsevier.com/composites-science-and-technology/ doi: 10.1016/S0266-3538(03)00103-9Liu, H., Zhang, J. Research progress in toughening modification of poly(lactic acid) (2011) Journal of Polymer Science, Part B: Polymer Physics, 49 (15), pp. 1051-1083. Cited 632 times. doi: 10.1002/polb.22283Ho, M.-P., Lau, K.-T., Wang, H., Hui, D. Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles (2015) Composites Part B: Engineering, 81, art. no. 3647, pp. 14-25. Cited 179 times. doi: 10.1016/j.compositesb.2015.05.048Domínguez-Robles, J., Martin, N.K., Fong, M.L., Stewart, S.A., Irwin, N.J., Rial-Hermida, M.I., Donnelly, R.F., (...), Larrañeta, E. Antioxidant pla composites containing lignin for 3D printing applications: A potential material for healthcare applications (2019) Pharmaceutics, 11 (4), art. no. 165. Cited 153 times. https://www.mdpi.com/1999-4923/11/4/165/pdf doi: 10.3390/pharmaceutics11040165Potts, J.R., Dreyer, D.R., Bielawski, C.W., Ruoff, R.S. Graphene-based polymer nanocomposites (2011) Polymer, 52 (1), pp. 5-25. Cited 2662 times. http://www.journals.elsevier.com/polymer/ doi: 10.1016/j.polymer.2010.11.042Vargas C., O.A., Caballero, A., Morales, J. Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted? (2012) Nanoscale, 4 (6), pp. 2083-2092. Cited 122 times. http://www.rsc.org/publishing/journals/NR/Index.asp doi: 10.1039/c2nr11936fInternational, C.A. (2021) Standard Practice for Injection Molding Test Specimens of Thermoplastic Molding and Extrusion Materials USA(2015) Standard Test Method for Tensile Properties of Plastics. Cited 198 times. C. A. International USALoryuenyong, V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo, W., Buasri, A. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods (2013) Advances in Materials Science and Engineering, 2013, art. no. 923403. Cited 270 times. doi: 10.1155/2013/923403Ferrari, A., Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon (2000) Physical Review B - Condensed Matter and Materials Physics, 61 (20), pp. 14095-14107. Cited 12095 times. doi: 10.1103/PhysRevB.61.14095Pascal, P., Kandara, M., Paredes, G., Moulin, L., Weiss-Hortala, E., Kundu, A., Ratel, N., (...), Monthloux, M. Analyzing the Raman spectra of graphenic xarbon materials from kerogens to nanotubes: What type of information can be extracted from defect bands? (2019) J. Carbon Res., 5, p. 69. Cited 88 times.Wojtoniszak, M., Chen, X., Kalenczuk, R.J., Wajda, A., Łapczuk, J., Kurzewski, M., Drozdzik, M., (...), Borowiak-Palen, E. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide (2012) Colloids and Surfaces B: Biointerfaces, 89 (1), pp. 79-85. Cited 349 times. www.elsevier.com/locate/colsurfb doi: 10.1016/j.colsurfb.2011.08.026Sahoo, M., Antony, R.P., Mathews, T., Dash, S., Tyagi, A.K. Raman studies of chemically and thermally reduced graphene oxide (2013) AIP Conference Proceedings, 1512, pp. 1262-1263. Cited 26 times. ISBN: 978-073541133-3 doi: 10.1063/1.4791511Wang, F., Zhang, K. Reduced graphene oxide-TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B (2011) Journal of Molecular Catalysis A: Chemical, 345 (1-2), pp. 101-107. Cited 226 times. doi: 10.1016/j.molcata.2011.05.026Mazzoli, A., Favoni, O. Particle size, size distribution and morphological evaluation of airborne dust particles of diverse woods by Scanning Electron Microscopy and image processing program (2012) Powder Technology, 225, pp. 65-71. Cited 130 times. doi: 10.1016/j.powtec.2012.03.033Dittrich, B., Wartig, K.-A., Hofmann, D., Mülhaupt, R., Schartel, B. Carbon black, multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites (2013) Polymers for Advanced Technologies, 24 (10), pp. 916-926. Cited 125 times. doi: 10.1002/pat.3165Wang, K., Hu, N.-X., Xu, G., Qi, Y. Stable superhydrophobic composite coatings made from an aqueous dispersion of carbon nanotubes and a fluoropolymer (Open Access) (2011) Carbon, 49 (5), pp. 1769-1774. Cited 53 times. doi: 10.1016/j.carbon.2010.12.063Zhang, W., Zuo, H., Zhang, X., Wang, J., Guo, L., Peng, X. Preparation of graphene-perfluoroalkoxy composite and thermal and mechanical properties (2018) Polymers, 10 (7), art. no. 700. Cited 17 times. http://www.mdpi.com/2073-4360/10/7/700/pdf doi: 10.3390/polym10070700Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors (2008) ACS Nano, 2 (3), pp. 463-470. Cited 2890 times. doi: 10.1021/nn700375nD'Urso, L., Acocella, M.R., Guerra, G., Iozzino, V., De Santis, F., Pantani, R. PLA melt stabilization by high-surface-area graphite and carbon black (2018) Polymers, 10 (2), art. no. 139. Cited 18 times. http://www.mdpi.com/2073-4360/10/2/139/pdf doi: 10.3390/polym10020139Kim, I.H., Jeong, Y.G. Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity (2010) Journal of Polymer Science, Part B: Polymer Physics, 48 (8), pp. 850-858. Cited 282 times. http://www3.interscience.wiley.com/cgi-bin/fulltext/123308832/PDFSTART doi: 10.1002/polb.21956Sangurima, E.X., Maldonado, F.M. (2016) Degree Thesis Universidad Politécnica Salesiana De EcuadorMensah, B., Kang, S.I., Wang, W., Nah, C. Effect of graphene on polar and nonpolar rubber matrices (2018) Mech. Adv. Mater. Modern Process., 4, pp. 1-12. Cited 29 times. https://doi.org/10.1186/s40759-017-0034-0Domínguez-Robles, J., Larrañeta, E., Fong, M.L., Martin, N.K., Irwin, N.J., Mutjé, P., Tarrés, Q., (...), Delgado-Aguilar, M. Lignin/poly(butylene succinate) composites with antioxidant and antibacterial properties for potential biomedical applications (2020) International Journal of Biological Macromolecules, 145, pp. 92-99. Cited 95 times. www.elsevier.com/locate/ijbiomac doi: 10.1016/j.ijbiomac.2019.12.146Gerardo, M., Salavagione, H. Nanocompuestos poliméricos a partir de grafeno (2010) Rev. Plast. Mod., 646, pp. 336-346.Shahbazi, M., Jäger, H. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges (2021) ACS Applied Bio Materials, 4 (1), pp. 325-369. Cited 52 times. pubs.acs.org/journal/aabmcb doi: 10.1021/acsabm.0c01379Goutham, R., Veena, T.R., Babagowda, Prasad, K.R.S. Study on mechanical properties of recycled Acrylonitrile Butadiene Styrene (ABS) blended with virgin Acrylonitrile Butadiene Styrene (ABS) using Taguchi method (Open Access) (2018) Materials Today: Proceedings, Part 3 5 (11), pp. 24836-24845. Cited 11 times. https://www.sciencedirect.com/journal/materials-today-proceedings doi: 10.1016/j.matpr.2018.10.282Amza, C.G., Zapciu, A., Eyórsdóttir, A., Björnsdóttir, A., Borg, J. Mechanical properties of 3D printed composites with ABS/ASA substrate and glass fiber inserts (Open Access) (2019) MATEC Web of Conferences, 290, art. no. 04002. Cited 4 times. http://www.matec-conferences.org/ doi: 10.1051/matecconf/201929004002Franciszczak, P., Piesowicz, E., Kalniņš, K. Manufacturing and properties of r-PETG/PET fibre composite – Novel approach for recycling of PETG plastic scrap into engineering compound for injection moulding (Open Access) (2018) Composites Part B: Engineering, 154, pp. 430-438. Cited 17 times. doi: 10.1016/j.compositesb.2018.09.023Zhang, W., Xu, Y. (2019) Mechanical Properties of Polycarbonate ISTE Press Ltd, Elsevier Ltd London 1stChapterhttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINALPolylactic acid effectively reinforced with reduced graphitic oxide.pdfPolylactic acid effectively reinforced with reduced graphitic oxide.pdfapplication/pdf164452https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/1/Polylactic%20acid%20effectively%20reinforced%20with%20reduced%20graphitic%20oxide.pdfaa6b39236326d7130bd1e66e9e7908b1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTPolylactic acid effectively reinforced with reduced graphitic oxide.pdf.txtPolylactic acid effectively reinforced with reduced graphitic oxide.pdf.txtExtracted texttext/plain9761https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/4/Polylactic%20acid%20effectively%20reinforced%20with%20reduced%20graphitic%20oxide.pdf.txtfc0fff86a2673a6c9156359112a9e2c5MD54THUMBNAILPolylactic acid effectively reinforced with reduced graphitic oxide.pdf.jpgPolylactic acid effectively reinforced with reduced graphitic oxide.pdf.jpgGenerated Thumbnailimage/jpeg8051https://repositorio.utb.edu.co/bitstream/20.500.12585/12365/5/Polylactic%20acid%20effectively%20reinforced%20with%20reduced%20graphitic%20oxide.pdf.jpgdf919243e654c6f22add54e835f63ef5MD5520.500.12585/12365oai:repositorio.utb.edu.co:20.500.12585/123652023-07-22 00:18:11.835Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=