Perchlorate-reducing bacteria from Antarctic marine sediments

Perchlorate is a contaminant that can persist in groundwater and soil, and is frequently detected in diferent ecosystems at concentrations relevant to human health. This study isolated and characterised halotolerant bacteria that can potentially perform perchlorate reduction. Bacterial microorganism...

Full description

Autores:
Acevedo Barrios, Rosa
Rubiano‑Labrador, Carolina
Navarro‑Narvaez, Dhania
Escobar‑Galarza, Johana
González, Diana
Mira, Stephanie
Moreno, Dayana
Contreras, Aura
Miranda‑Castro, Wendy
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/11121
Acceso en línea:
https://hdl.handle.net/20.500.12585/11121
https://doi.org/10.1007/s10661-022-10328-w
Palabra clave:
Extremophiles
Halotolerant bacteria
Psychrotolerant microorganism
Psychrophilic bacteria
Perchlorate biodegradation
Toxicity
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_4d1ce61f4fd79823a5b249da8c68a9f9
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/11121
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Perchlorate-reducing bacteria from Antarctic marine sediments
title Perchlorate-reducing bacteria from Antarctic marine sediments
spellingShingle Perchlorate-reducing bacteria from Antarctic marine sediments
Extremophiles
Halotolerant bacteria
Psychrotolerant microorganism
Psychrophilic bacteria
Perchlorate biodegradation
Toxicity
LEMB
title_short Perchlorate-reducing bacteria from Antarctic marine sediments
title_full Perchlorate-reducing bacteria from Antarctic marine sediments
title_fullStr Perchlorate-reducing bacteria from Antarctic marine sediments
title_full_unstemmed Perchlorate-reducing bacteria from Antarctic marine sediments
title_sort Perchlorate-reducing bacteria from Antarctic marine sediments
dc.creator.fl_str_mv Acevedo Barrios, Rosa
Rubiano‑Labrador, Carolina
Navarro‑Narvaez, Dhania
Escobar‑Galarza, Johana
González, Diana
Mira, Stephanie
Moreno, Dayana
Contreras, Aura
Miranda‑Castro, Wendy
dc.contributor.author.none.fl_str_mv Acevedo Barrios, Rosa
Rubiano‑Labrador, Carolina
Navarro‑Narvaez, Dhania
Escobar‑Galarza, Johana
González, Diana
Mira, Stephanie
Moreno, Dayana
Contreras, Aura
Miranda‑Castro, Wendy
dc.subject.keywords.spa.fl_str_mv Extremophiles
Halotolerant bacteria
Psychrotolerant microorganism
Psychrophilic bacteria
Perchlorate biodegradation
Toxicity
topic Extremophiles
Halotolerant bacteria
Psychrotolerant microorganism
Psychrophilic bacteria
Perchlorate biodegradation
Toxicity
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Perchlorate is a contaminant that can persist in groundwater and soil, and is frequently detected in diferent ecosystems at concentrations relevant to human health. This study isolated and characterised halotolerant bacteria that can potentially perform perchlorate reduction. Bacterial microorganisms were isolated from marine sediments on Deception, Horseshoe and Half Moon Islands of Antarctica. The results of the 16S ribosomal RNA (rRNA) gene sequence analysis indicated that the isolates were phylogenetically related to Psychrobacter cryohalolentis, Psychrobacter urativorans, Idiomarina loihiensis, Psychrobacter nivimaris, Sporosarcina aquimarina and Pseudomonas lactis. The isolates grew at a sodium chloride concentration of up to 30% and a perchlorate concentration of up to 10,000 mg/L, which showed their ability to survive in saline conditions and high perchlorate concentrations. Between 21.6 and 40% of perchlorate was degraded by the isolated bacteria. P. cryohalolentis and P. urativorans degraded 30.3% and 32.6% of perchlorate, respectively. I. loihiensis degraded 40% of perchlorate, and P. nivimaris, S. aquimarina and P. lactis degraded 22%, 21.8% and 21.6% of perchlorate, respectively. I. loihiensis had the highest reduction in perchlorate, whereas P. lactis had the lowest reduction. This study is signifcant as it is the frst fnding of P. cryohalolentis and. P. lactis on the Antarctic continent. In conclusion, these bacteria isolated from marine sediments on Antarctica ofer promising resources for the bioremediation of perchlorate contamination due to their ability to degrade perchlorate, showing their potential use as a biological system to reduce perchlorate in highsalinity ecosystems.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-29T13:24:09Z
dc.date.available.none.fl_str_mv 2022-09-29T13:24:09Z
dc.date.issued.none.fl_str_mv 2022-08-08
dc.date.submitted.none.fl_str_mv 2022-09-28
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Acevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D. et al. Perchlorate-reducing bacteria from Antarctic marine sediments. Environ Monit Assess 194, 654 (2022). https://doi.org/10.1007/s10661-022-10328-w
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/11121
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10661-022-10328-w
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D. et al. Perchlorate-reducing bacteria from Antarctic marine sediments. Environ Monit Assess 194, 654 (2022). https://doi.org/10.1007/s10661-022-10328-w
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/11121
https://doi.org/10.1007/s10661-022-10328-w
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 13 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv SpringerLink - Environmental Monitoring and Assessment Vol. 194 N° 654
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/1/s10661-022-10328-w.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/4/s10661-022-10328-w.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/5/s10661-022-10328-w.pdf.jpg
bitstream.checksum.fl_str_mv 4328d3495332881159e84c749e54bde2
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
196e0f08bb06fee9a6ecb9775e131a0c
fa24a8188750b8237872cbf2fb0e306e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021782952214528
spelling Acevedo Barrios, Rosa0680fd94-2a5f-4443-92a7-ce1ab0f2fd6dRubiano‑Labrador, Carolina31348231-1903-47c5-bddf-35cba55f443cNavarro‑Narvaez, Dhania5a774bf3-aaaf-4a6d-b787-52de1cfa4b8dEscobar‑Galarza, Johana898eae62-4e83-4bdf-8028-241b7bebc7c5González, Dianae69e2c7d-7c62-459f-a38d-ab233420c540Mira, Stephaniedcfd4fd3-bd21-4ecb-b1bf-6e0f355f6909Moreno, Dayanaa276812e-5c84-49c1-ba87-403fddc7ac9cContreras, Aura8fe61883-ee89-46b0-9e99-d217182f2074Miranda‑Castro, Wendy42268df0-ad55-478f-ba40-62bdc92ac36b2022-09-29T13:24:09Z2022-09-29T13:24:09Z2022-08-082022-09-28Acevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D. et al. Perchlorate-reducing bacteria from Antarctic marine sediments. Environ Monit Assess 194, 654 (2022). https://doi.org/10.1007/s10661-022-10328-whttps://hdl.handle.net/20.500.12585/11121https://doi.org/10.1007/s10661-022-10328-wUniversidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarPerchlorate is a contaminant that can persist in groundwater and soil, and is frequently detected in diferent ecosystems at concentrations relevant to human health. This study isolated and characterised halotolerant bacteria that can potentially perform perchlorate reduction. Bacterial microorganisms were isolated from marine sediments on Deception, Horseshoe and Half Moon Islands of Antarctica. The results of the 16S ribosomal RNA (rRNA) gene sequence analysis indicated that the isolates were phylogenetically related to Psychrobacter cryohalolentis, Psychrobacter urativorans, Idiomarina loihiensis, Psychrobacter nivimaris, Sporosarcina aquimarina and Pseudomonas lactis. The isolates grew at a sodium chloride concentration of up to 30% and a perchlorate concentration of up to 10,000 mg/L, which showed their ability to survive in saline conditions and high perchlorate concentrations. Between 21.6 and 40% of perchlorate was degraded by the isolated bacteria. P. cryohalolentis and P. urativorans degraded 30.3% and 32.6% of perchlorate, respectively. I. loihiensis degraded 40% of perchlorate, and P. nivimaris, S. aquimarina and P. lactis degraded 22%, 21.8% and 21.6% of perchlorate, respectively. I. loihiensis had the highest reduction in perchlorate, whereas P. lactis had the lowest reduction. This study is signifcant as it is the frst fnding of P. cryohalolentis and. P. lactis on the Antarctic continent. In conclusion, these bacteria isolated from marine sediments on Antarctica ofer promising resources for the bioremediation of perchlorate contamination due to their ability to degrade perchlorate, showing their potential use as a biological system to reduce perchlorate in highsalinity ecosystems.13 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2SpringerLink - Environmental Monitoring and Assessment Vol. 194 N° 654Perchlorate-reducing bacteria from Antarctic marine sedimentsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1ExtremophilesHalotolerant bacteriaPsychrotolerant microorganismPsychrophilic bacteriaPerchlorate biodegradationToxicityLEMBCartagena de IndiasAbd-Elnaby, H. M., Abou-Elela, G. M., Ghozlan, H. A., Hussein, H., & Sabry, S. A. (2016). Characterization and bioremediation potential of marine Psychrobacter species. The Egyptian Journal of Aquatic Research, 42(2), 193–203. https://doi.org/10.1016/j.ejar.2016.04.003Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2016). Perchlorate tolerant bacteria from saline environments at the Caribbean region of Colombia. Toxicology Letters, 259, S103. https://doi.org/10.1016/j.toxlet.2016.07.257 - DOIAcevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2019a). Perchlorate-reducing bacteria from hypersaline soils of the Colombian Caribbean. International Journal of Microbiology, 2019, 1–13. https://doi.org/10.1155/2019/6981865 - DOIAcevedo-Barrios, R., & Olivero-Verbel, J. (2021). Perchlorate contamination: Sources, effects, and technologies for remediation (pp. 103–120). https://doi.org/10.1007/398_2021_66Acevedo-Barrios, R., Rubiano-Labrador, C., & Miranda-Castro, W. (2022). Presence of perchlorate in marine sediments from Antarctica during 2017–2020. Environmental Monitoring and Assessment, 194(2), 102. https://doi.org/10.1007/s10661-022-09765-4 - DOIAcevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697–13708. https://doi.org/10.1007/s11356-018-1565-6 - DOIAcevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2019b). Perchlorate toxicity in organisms from different trophic levels, (September), 2–3. https://doi.org/10.1016/j.toxlet.2019.09.00Achenbach, L. A., & Coates, J. D. (2004). Microbial perchlorate reduction: Roket-fuelled metabolism. Nature reviews. Microbiology, 2(July). https://doi.org/10.1038/nrmicro926Achenbach, L. A., Michaelidou, U., Bruce, R. A., Fryman, J., & Coates, J. D. (2001). Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per) chlorate-reducing bacteria and their phylogenetic position. International Journal of Systematic and Evolutionary Microbiology, 51(2), 527–533.Aguila-Müller, I. (2015). Invasores Antárticos. Universidad de Magallanes.Ahn, C. H., Oh, H., Ki, D., Van Ginkel, S. W., Rittmann, B. E., & Park, J. (2009). Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Applied Microbiology and Biotechnology, 81(6), 1169–1177. https://doi.org/10.1007/s00253-008-1797-3 - DOIAmato, P., & Christner, B. C. (2009). Energy metabolism response to low-temperature and frozen conditions in Psychrobacter cryohalolentis. Applied and Environmental Microbiology, 75(3), 711–718. https://doi.org/10.1128/AEM.02193-08 - DOIAzevedo, J. S. N., Correia, A., & Henriques, I. (2013). Molecular analysis of the diversity of genus Psychrobacter present within a temperate estuary. FEMS Microbiology Ecology, 84(3), 451–460. https://doi.org/10.1111/1574-6941.12075 - DOIBahamdain, L., Fahmy, F., Lari, S., & Aly, M. (2015). Characterization of some Bacillus strains obtained from marine habitats using different taxonomical methods. Life Science Journal, 12(4).Bakermans, C., Ayala-del-Río, H. L., Ponder, M. A., Vishnivetskaya, T., Gilichinsky, D., Thomashow, M. F., & Tiedje, J. M. (2006). Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. International Journal of Systematic and Evolutionary Microbiology, 56(6), 1285–1291. https://doi.org/10.1099/ijs.0.64043-0Bardiya, N., & Bae, J. H. (2011). Dissimilatory perchlorate reduction: A review. Microbiological Research, 166(4), 237–254. https://doi.org/10.1016/j.micres.2010.11.005 - DOIBendia, A. G., Araujo, G. G., Pulschen, A. A., Contro, B., Duarte, R. T. D., Rodrigues, F., et al. (2018a). Surviving in hot and cold: Psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles, 22(6), 917–929. https://doi.org/10.1007/s00792-018-1048-1 - DOIBendia, A. G., Signori, C. N., Franco, D. C., Duarte, R. T. D., Bohannan, B. J. M., & Pellizari, V. H. (2018b). A mosaic of geothermal and marine features shapes microbial community structure on deception Island Volcano, Antarctica. Frontiers in Microbiology, 9(MAY), 1–13. https://doi.org/10.3389/fmicb.2018.00899 - DOIBoone, D. R., Castenholz, R. W., Garrity, G. M., Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s Manual® of Systematic Bacteriology. (Brenner D. J., Krieg N. R., & Staley J. T., Eds.)Bergey’s Manual® of Systematic Bacteriology (Vol. 2). Boston, MA: Springer Science & Business MediaBowman, J. P. (2006). The genus Psychrobacter. In The Prokaryotes (pp. 920–930). https://doi.org/10.1099/00207713-42-1-44Bowman, J. P., Cavanagh, J., Austin, J. J., & Sanderson, K. (1996). Novel Psychrobacter species from Antarctic ornithogenic soils. International Journal of Systematic Bacteriology, 46(4), 841–848. https://doi.org/10.1099/00207713-46-4-841 - DOIBozal, N., Montes, M. J., Tudela, E., & Guinea, J. (2003). Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. International Journal of Systematic and Evolutionary Microbiology, 53(4), 1093–1100. https://doi.org/10.1099/ijs.0.02457-0Brown, G. M., & Gu, B. (2006). The chemistry of perchlorate in the environment. Perchlorate: Environmental Occurrence, Interactions and Treatment, 17–47. https://doi.org/10.1007/0-387-31113-0_2Bruce, R. A., Achenbach, L. A., & Coates, J. D. (1999). Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environmental Microbiology, 1(4), 319–329. https://doi.org/10.1046/j.1462-2920.1999.00042.x - DOICalderón, R., Godoy, F., Escudey, M., & Palma, P. (2017). A review of perchlorate (ClO4−) occurrence in fruits and vegetables. Environmental Monitoring and Assessment, 189(2). https://doi.org/10.1007/s10661-017-5793-xCalderón, R., Palma, P., Parker, D., Molina, M., Godoy, F. A., & Escudey, M. (2014). Perchlorate levels in soil and waters from the Atacama Desert. Archives of Environmental Contamination and Toxicology, 66(2), 155–161. https://doi.org/10.1007/s00244-013-9960-y - DOICang, Y., Roberts, D. J., & Clifford, D. A. (2004). Development of cultures capable of reducing perchlorate and nitrate in high salt solutions. Water Research, 38(14), 3322–3330. - DOICao, F., Jaunat, J., Sturchio, N., Cancès, B., Morvan, X., Devos, A., et al. (2019). Worldwide occurrence and origin of perchlorate ion in waters: A review. Science of the Total Environment, 661, 737–749. https://doi.org/10.1016/j.scitotenv.2019.01.107 - DOICarlström, C. I., Lucas, L. N., Rohde, R. A., Haratian, A., Engelbrektson, A. L., & Coates, J. D. (2016). Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Applied Microbiology and Biotechnology, 100(22), 9719–9732. https://doi.org/10.1007/s00253-016-7780-5 - DOICastelán-Sánchez, H. G., Elorrieta, P., Romoacca, P., Liñan-Torres, A., Sierra, J. L., Vera, I., et al. (2019). Intermediate-salinity systems at high altitudes in the Peruvian Andes unveil a high diversity and abundance of bacteria and viruses. Genes, 10(11), 891. https://doi.org/10.3390/genes10110891 - DOICenturion, V. B., Delforno, T. P., Lacerda-Júnior, G. V., Duarte, A. W. F., Silva, L. J., Bellini, G. B., et al. (2019). Unveiling resistome profiles in the sediments of an Antarctic volcanic island. Environmental Pollution, 255, 113240. https://doi.org/10.1016/j.envpol.2019.113240 - DOIChambers, S. D., Hong, S. B., Williams, A. G., Crawford, J., Griffiths, A. D., & Park, S. J. (2014). Characterising terrestrial influences on Antarctic air masses using Radon-222 measurements at King George Island. Atmospheric Chemistry and Physics, 14(18), 9903–9916. https://doi.org/10.5194/acp-14-9903-2014 - DOIChaudhuri, S. K., O’connor, S. M., Gustavson, R. L., Achenbach, L. A., & Coates, J. D. (2002). Environmental factors that control microbial perchlorate reduction. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 68(9), 4425–4430. https://doi.org/10.1128/AEM.68.9.4425-4430.2002 - DOIChe, S., Song, L., Song, W., Yang, M., Liu, G., & Lin, X. (2013). Complete genome sequence of Antarctic bacterium Psychrobacter sp. strain G. Genome Announcements, 1(5), 2012–2013. https://doi.org/10.1128/genomeA.e00725-13Chung, J., Shin, S., & Oh, J. (2009). Characterization of a microbial community capable of reducing perchlorate and nitrate in high salinity. Biotechnology Letters, 31(7), 959–966. https://doi.org/10.1007/s10529-009-9960-1 - DOICorrea, T., & Abreu, F. (2020). Antarctic microorganisms as sources of biotechnological products. In Physiological and Biotechnological Aspects of Extremophiles (pp. 269–284). Elsevier. https://doi.org/10.1016/B978-0-12-818322-9.00020-4Cowan, D. A., Makhalanyane, T. P., Dennis, P. G., & Hopkins, D. W. (2014). Microbial ecology and biogeochemistry of continental antarctic soils. Frontiers in Microbiology, 5(APR), 1–10. https://doi.org/10.3389/fmicb.2014.00154Crawford, T. Z., Kub, A. D., Peterson, K. M., Cox, T. S., & Cole-Dai, J. (2017). Reduced perchlorate in West Antarctica snow during stratospheric ozone hole. Antarctic Science, 29(3), 292–296. https://doi.org/10.1017/S0954102016000705 - DOIDeng, Z., Han, X., Chen, C., Wang, H., Ma, B., & Zhang, D. (2020). The distribution characteristics of polychlorinated biphenyls ( PCBs ) in the surface sediments of Ross Sea and Drake Passage, Antarctica: A 192 congeners analysis. Marine Pollution Bulletin, 154 (December 2019), 111043. https://doi.org/10.1016/j.marpolbul.2020.111043Donachie, S. P. (2003). Idiomarina loihiensis sp. nov., a halophilic -Proteobacterium from the Lo’ihi submarine volcano, Hawai’i. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 53(6), 1873–1879. https://doi.org/10.1099/ijs.0.02701-0Eck, W. S. (2015). Chapter 28 - Wildlife Toxicity assessment for perchlorate. In M. A. Williams, G. Reddy, M. J. Quinn, & M. S. Johnson (Eds.), Wildlife toxicity assessments for chemicals of military concern (pp. 499–553). Elsevier. https://doi.org/10.1016/B978-0-12-800020-5.00028-4Fernández, L. A., Zalba, P., Gómez, M. A., & Sagardoy, M. A. (2005). Bacterias solubilizadoras de fosfato inorgánico aisladas de suelos de la región sojera. Ciencia Del Suelo, 23(1), 31–37.Flores, P. A. M., Correa Llantén, D. N., & Blamey, J. M. (2018). A thermophilic microorganism from Deception Island, Antarctica with a thermostable glutamate dehydrogenase activity. Biological Research, 51(1), 1–7. https://doi.org/10.1186/s40659-018-0206-3 - DOIGalbán-Malagón, C., Collins, B., & Barria, K. (2019). Las rutas de la contaminación antártica.Gholamian, F., Sheikh-Mohseni, M. A., & Salavati-Niasari, M. (2011). Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper. Materials Science and Engineering C, 31(8), 1688–1691. https://doi.org/10.1016/j.msec.2011.07.017 - DOIGoordial, J., Lamarche-Gagnon, G., Lay, C.-Y., & Whyte, L. (2013). Left out in the cold: Life in cryoenvironments. Polyextremophiles, 27, 249–267. https://doi.org/10.1007/978-94-007-6488-0 - DOIHall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium, 41, 95–98.Isobe, T., Ogawa, S. P., Sugimoto, R., Ramu, K., Sudaryanto, A., Malarvannan, G., et al. (2013). Perchlorate contamination of groundwater from fireworks manufacturing area in South India. Environmental Monitoring and Assessment, 185(7), 5627–5637. https://doi.org/10.1007/s10661-012-2972-7 - DOIJackson, W. A., Böhlke, J. K., Gu, B., Hatzinger, P. B., & Sturchio, N. C. (2010). Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environmental Science & Technology, 44(13), 4869–4876. - DOIJackson, W. A., Davila, A. F., Estrada, N., Berry Lyons, W., Coates, J. D., & Priscu, J. C. (2012). Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Geochimica Et Cosmochimica Acta, 98, 19–30. https://doi.org/10.1016/j.gca.2012.09.014 - DOIJiang, S., Cole-dai, J., An, C., Shi, G., Yu, J., & Sun, B. (2020). Spatial variability of perchlorate in East Antarctic surface snow: Implications for atmospheric production. Atmospheric Environment, 238(451), 117743. https://doi.org/10.1016/j.atmosenv.2020.117743 - DOIJiang, S., Cox, T. S., Cole-Dai, J., Peterson, K. M., & Shi, G. (2016). Trends of perchlorate in Antarctic snow: Implications for atmospheric production and preservation in snow. Geophysical Research Letters, 43(18), 9913–9919. https://doi.org/10.1002/2016GL070203 - DOIJiang, S., Li, Y.-S., & Sun, B. (2013). Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method. Chinese Chemical Letters, 24(4), 311–314. https://doi.org/10.1016/j.cclet.2013.02.011 - DOIJiang, S., Shi, G., Cole-Dai, J., An, C., & Sun, B. (2021). Occurrence, latitudinal gradient and potential sources of perchlorate in the atmosphere across the hemispheres (31°N to 80°S). Environment International, 156, 106611. https://doi.org/10.1016/j.envint.2021.106611Kokoulin, M. S., Kuzmich, A. S., Romanenko, L. A., Chikalovets, I. V., & Chernikov, O. V. (2020). Structure and in vitro bioactivity against cancer cells of the capsular polysaccharide from the marine bacterium Psychrobacter marincola. Marine Drugs. https://doi.org/10.3390/md18050268 - DOIKoneman, E. W., Allen, S., Janda, W., Schreckenberger, P., Winn, W., Woods, G., & Procop, G. (2006). Koneman’s color atlas and textbook of diagnostic microbiology (6th ed.).Kounaves, S. P., Stroble, S. T., Anderson, R. M., Moore, Q., Catling, D. C., Douglas, S., et al. (2010). Discovery of natural perchlorate in the Antarctic dry valleys and its global implications. Environmental Science and Technology, 44(7), 2360–2364. https://doi.org/10.1021/es9033606 - DOIKucharzyk, K. H., Crawford, R. L., Paszczynski, A. J., & Hess, T. F. (2010). A method for assaying perchlorate concentration in microbial cultures using the fluorescent dye resazurin. Journal of Microbiological Methods, 81(1), 26–32. https://doi.org/10.1016/j.mimet.2010.01.019 - DOKucharzyk, K. H., Soule, T., & Hess, T. F. (2013). Maximizing microbial perchlorate degradation using a genetic algorithm: Consortia optimization. Biodegradation, 24(5), 583–596. https://doi.org/10.1007/s10532-012-9602-5 - DOIKuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: A critical perspective Saranya. Reviews of Environmental Contamination and Toxicology. https://doi.org/10.1007/978-3-319-20013-2 - DOILasek, R., Dziewit, L., Ciok, A., Decewicz, P., Romaniuk, K., Jedrys, Z., et al. (2017). Genome content, metabolic pathways and biotechnological potential of the psychrophilic Arctic bacterium Psychrobacter sp. DAB_AL43B, a source and a host of novel Psychrobacter-specific vectors. Journal of Biotechnology, 263, 64–74. https://doi.org/10.1016/j.jbiotec.2017.09.011 - DOIaye, V. J., & DasSarma, S. (2018). An Antarctic extreme halophile and its polyextremophilic enzyme: Effects of perchlorate salts. Astrobiology, 18(4), 412–418. https://doi.org/10.1089/ast.2017.1766 - DOILiebensteiner, M. G., Oosterkamp, M. J., & Stams, A. J. M. (2015). Microbial respiration with chlorine oxyanions: Diversity and physiological and biochemical properties of chlorate- and perchlorate-reducing microorganisms. Annals of the New York Academy of Sciences, 1365(1), 59–72. https://doi.org/10.1111/nyas.12806 - DOILogan, B. E., Wu, J., & Unz, R. F. (2001). Biological perchlorate reduction in high-salinity solutions. Water Research, 35(12), 3034–3038. https://doi.org/10.1016/S0043-1354(01)00013-6 - DOILong, X., Tian, J., Liao, X., & Tian, Y. (2018). Adaptations of Bacillus shacheensis HNA-14 required for long-term survival under osmotic, 27525–27536. https://doi.org/10.1039/c8ra05472jLPSN. (n.d.). Genus: Psychrobacter. https://lpsn.dsmz.de/genus/psychrobacter . Accessed 6 October 2020Lv, P. L., Shi, L. D., Dong, Q. Y., Rittmann, B., & Zhao, H. P. (2020). How nitrate affects perchlorate reduction in a methane-based biofilm batch reactor. Water Research, 171(3), 115397. https://doi.org/10.1016/j.watres.2019.115397 - DOIMalavenda, R., Rizzo, C., Michaud, L., Gerçe, B., Bruni, V., Syldatk, C., et al. (2015). Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biology, 38(10), 1565–1574. https://doi.org/10.1007/s00300-015-1717-9 - DOIMarina-Montes, C., Pérez-Arribas, L. V., Escudero, M., Anzano, J., & Cáceres, J. O. (2020). Heavy metal transport and evolution of atmospheric aerosols in the Antarctic region. Science of the Total Environment, 721, 137702. https://doi.org/10.1016/j.scitotenv.2020.137702 - DOIMartin, A., Hall, J., & Ryan, K. (2009). Low salinity and high-level UV-B radiation reduce single-cell activity in Antarctic sea ice bacteria. Applied and Environmental Microbiology, 75(23), 7570–7573. https://doi.org/10.1128/AEM.00829-09 - DOIMatsubara, T., Fujishima, K., Saltikov, C. W., Nakamura, S., & Rothschild, L. J. (2017). Earth analogues for past and future life on Mars: Isolation of perchlorate resistant halophiles from Big Soda Lake. International Journal of Astrobiology, 16(3), 218–228. https://doi.org/10.1017/S1473550416000458Muñoz-Villagrán, C. M., Mendez, K. N., Cornejo, F., Figueroa, M., Undabarrena, A., Morales, E. H., et al. (2018). Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. PeerJ, 2018(2), 1–23. https://doi.org/10.7717/peerj.4402 - DOINam, J. H., Ventura, J. R. S., Yeom, I. T., Lee, Y., & Jahng, D. (2016). A novel perchlorate- and nitrate-reducing bacterium, Azospira sp. PJM. Applied Microbiology and Biotechnology, 100(13), 6055–6068. https://doi.org/10.1007/s00253-016-7401-3 - DOINor, S. J., Lee, S. H., Cho, K. S., Cha, D. K., Lee, K. I., & Ryu, H. W. (2011). Microbial treatment of high-strength perchlorate wastewater. Bioresource Technology, 102(2), 835–841. https://doi.org/10.1016/j.biortech.2010.08.127 - DOINozawa-Inoue, M., Scow, K. M., & Rolston, D. E. (2005). Reduction of perchlorate and nitrate by microbial communities in vadose soil. Applied and Environmental Microbiology, 71(7), 3928–3934. https://doi.org/10.1128/AEM.71.7.3928-3934.2005 - DOIParker, D. R. (2009). Perchlorate in the environment: The emerging emphasis on natural occurrence. Environmental Chemistry, 6(1), 10–27. - DOIPeix, A., Ramírez-Bahena, M.-H., & Velázquez, E. (2018). The current status on the taxonomy of Pseudomonas revisited: An update. Infection, Genetics and Evolution, 57, 106–116. https://doi.org/10.1016/j.meegid.2017.10.026 - DOIPereira, J. L., Pereira, P., Padeiro, A., Gonçalves, F., Amaro, E., Leppe, M., et al. (2017). Environmental hazard assessment of contaminated soils in Antarctica: Using a structured tier 1 approach to inform decision-making. Science of the Total Environment, 574, 443–454. https://doi.org/10.1016/j.scitotenv.2016.09.091 - DOIPrabagaran, S. R., Manorama, R., Delille, D., & Shivaji, S. (2007). Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiology Ecology, 59(2), 342–355. https://doi.org/10.1111/j.1574-6941.2006.00213.x - DOIReddy, G. S. N., Matsumoto, G. I., & Shivaji, S. (2003). Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1363–1367. https://doi.org/10.1099/ijs.0.02628-0Riddle, M., & Chapman, P. (2005). Toxic effects of contaminants in polar marine Environments. Environmental, Sciencie and Technology, 6–8.Rose, N. L., Jones, V. J., Noon, P. E., Hodgson, D. A., Flower, R. J., & Appleby, P. G. (2012). Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from lake sediment fly ash particle records.Rubiano-Labrador, C., Díaz-Cárdenas, C., López, G., Gómez, J., & Baena, S. (2019). Colombian Andean thermal springs: Reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles, 23(6), 793–808. https://doi.org/10.1007/s00792-019-01132-5 - DOIRyu, H. W., Nor, S. J., Moon, K. E., Cho, K.-S., Cha, D. K., & Rhee, K. I. (2011). Reduction of perchlorate by salt tolerant bacterial consortia. Bioresource Technology, 103(1), 279–285. https://doi.org/10.1007/s10529-009-9960-1 - DOISantos, A. F., Pires, F., Jesus, H. E., Santos, A. L. S., Peixoto, R., Rosado, A. S., et al. (2015). Detection of proteases from Sporosarcina aquimarina and Algoriphagus antarcticus isolated from Antarctic soil. Anais Da Academia Brasileira De Ciências, 87(1), 109–119. https://doi.org/10.1590/0001-3765201520130519 - DOISarria, M., Gonzales, J. M., Gerrity, D., & Batista, J. (2019). Biological reduction of nitrate and perchlorate in soil microcosms: An electron donor comparison of glycerol, emulsified oil, and mulch extract. Groundwater Monitoring and Remediation, 39(2), 32–42. https://doi.org/10.1111/gwmr.12315 - DOISevda, S., Sreekishnan, T. R., Pous, N., Puig, S., & Pant, D. (2018). Bioelectroremediation of perchlorate and nitrate contaminated water. Bioresource Technology, 255, 331–339. https://doi.org/10.1016/j.biortech.2018.02.005Silva, T. R., Duarte, A. W. F., Passarini, M. R. Z., Ruiz, A. L. T. G., Franco, C. H., Moraes, C. B., et al. (2018). Bacteria from Antarctic environments: Diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biology, 41(7), 1505–1519. https://doi.org/10.1007/s00300-018-2300-y - DOISingh, R. P., & Jha, P. N. (2016). A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant (Triticum aestivum). Frontiers in Plant Science, 7(DECEMBER2016), 1–18. https://doi.org/10.3389/fpls.2016.01890 - DOISmith, D. J., Schuerger, A. C., Davidson, M. M., Pacala, S. W., Bakermans, C., & Onstott, T. C. (2009). Survivability of psychrobacter cryohalolentis K5 under simulated martian surface conditions. Astrobiology, 9(2), 221–228. https://doi.org/10.1089/ast.2007.0231 - DOSong, W., Gao, B., Zhang, X., Li, F., Xu, X., & Yue, Q. (2019). Biological reduction of perchlorate in domesticated activated sludge considering interaction effects of temperature, pH, electron donors and acceptors. Process Safety and Environmental Protection, 123, 169–178. https://doi.org/10.1016/j.psep.2019.01.009 - DOIUcar, D., Cokgor, E. U., Sahinkaya, E., Cetin, U., Bereketoglu, C., Calimlioglu, B., et al. (2017). Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system. International Biodeterioration and Biodegradation, 116, 83–90. https://doi.org/10.1016/j.ibiod.2016.10.017 - DOIUcar, D., Cokgor, E. U., Sahinkaya, E., Cetin, U., Bereketoglu, C., Calimlioglu, B., et al. (2017). Simultaneous nitrate and perchlorate removal from groundwater by heterotrophic-autotrophic sequential system. International Biodeterioration and Biodegradation, 116, 83–90. https://doi.org/10.1016/j.ibiod.2016.10.017 - DOIVega, M., Nerenberg, R., & Vargas, I. T. (2018). Perchlorate contamination in Chile: Legacy, challenges, and potential solutions. Environmental Research, 164(March), 316–326. https://doi.org/10.1016/j.envres.2018.02.034 - DOIWan, D., Liu, Y., Wang, Y., Wang, H., & Xiao, S. (2017). Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor: Kinetics and bacterial community structure. Water Research, 108, 280–292. https://doi.org/10.1016/j.watres.2016.11.003 - DOIWang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., et al. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707, 136092. https://doi.org/10.1016/j.scitotenv.2019.136092 - DOIXu, Q., Chu, Z., Gao, Y., Mei, Y., Yang, Z., Huang, Y., et al. (2020). Levels, sources and influence mechanisms of heavy metal contamination in topsoils in Mirror Peninsula, East Antarctica. Environmental Pollution. https://doi.org/10.1016/j.envpol.2019.113552 - DOYan, N., Marschner, P., Cao, W., Zuo, C., & Qin, W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3(4), 316–323. https://doi.org/10.1016/j.iswcr.2015.11.003 - DOIYe, L., You, H., Yao, J., & Su, H. (2012). Water treatment technologies for perchlorate: A review. Desalination, 298, 1–12. https://doi.org/10.1016/j.desal.2012.05.006 - DOIYumoto, I., Hirota, K., Kimoto, H., Nodasaka, Y., Matsuyama, H., & Yoshimune, K. (2010). Psychrobacter piscatorii sp. nov., a psychrotolerant bacterium exhibiting high catalase activity isolated from an oxidative environment. International Journal of Systematic and Evolutionary Microbiology, 60(1), 205–208. https://doi.org/10.1099/ijs.0.010959-0Zhang, D. C., Brouchkov, A., Griva, G., Schinner, F., & Margesin, R. (2013). Isolation and characterization of bacteria from ancient Siberian permafrost sediment. Biology, 2(1), 85–106. https://doi.org/10.3390/biology2010085 - DOIZhao, H. P., Van Ginkel, S., Tang, Y., Kang, D. W., Rittmann, B., & Krajmalnik-Brown, R. (2011). Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environmental Science and Technology, 45(23), 10155–10162. https://doi.org/10.1021/es202569b - DOIZhu, Y., Gao, N., Chu, W., Wang, S., & Xu, J. (2016). Bacterial reduction of highly concentrated perchlorate: Kinetics and influence of co-existing electron acceptors, temperature, pH and electron donors. Chemosphere, 148, 188–194. - DOIhttp://purl.org/coar/resource_type/c_2df8fbb1ORIGINALs10661-022-10328-w.pdfs10661-022-10328-w.pdfapplication/pdf1246541https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/1/s10661-022-10328-w.pdf4328d3495332881159e84c749e54bde2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTs10661-022-10328-w.pdf.txts10661-022-10328-w.pdf.txtExtracted texttext/plain60469https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/4/s10661-022-10328-w.pdf.txt196e0f08bb06fee9a6ecb9775e131a0cMD54THUMBNAILs10661-022-10328-w.pdf.jpgs10661-022-10328-w.pdf.jpgGenerated Thumbnailimage/jpeg8726https://repositorio.utb.edu.co/bitstream/20.500.12585/11121/5/s10661-022-10328-w.pdf.jpgfa24a8188750b8237872cbf2fb0e306eMD5520.500.12585/11121oai:repositorio.utb.edu.co:20.500.12585/111212023-04-24 08:25:07.66Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=