Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach

This paper proposes a passivity-based control (PBC) applied to a supercapacitor energy storage system (SCES) with a single-phase pulse-width-modulated voltage source converter (VSC). The proposed strategy allows to control the interchange of active and reactive power between SCES and the distributio...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8875
Acceso en línea:
https://hdl.handle.net/20.500.12585/8875
Palabra clave:
Passivity-based control (PBC)
Supercapacitor energy storage system (SCES)
Voltage source converter (VSC)
Electric power system control
Energy storage
Supercapacitor
Active and Reactive Power
Closed loop stability
Hamiltonian formulations
Passivity based control
Pulse-width-modulated
Reference frame
Supercapacitor energy storages
Voltage source converter (VSC)
Power control
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_4c76174a608018d1af99d11c4ffec2b9
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8875
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
title Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
spellingShingle Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
Passivity-based control (PBC)
Supercapacitor energy storage system (SCES)
Voltage source converter (VSC)
Electric power system control
Energy storage
Supercapacitor
Active and Reactive Power
Closed loop stability
Hamiltonian formulations
Passivity based control
Pulse-width-modulated
Reference frame
Supercapacitor energy storages
Voltage source converter (VSC)
Power control
title_short Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
title_full Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
title_fullStr Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
title_full_unstemmed Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
title_sort Apparent power control in single-phase grids using SCES devices: An IDA-PBC approach
dc.subject.keywords.none.fl_str_mv Passivity-based control (PBC)
Supercapacitor energy storage system (SCES)
Voltage source converter (VSC)
Electric power system control
Energy storage
Supercapacitor
Active and Reactive Power
Closed loop stability
Hamiltonian formulations
Passivity based control
Pulse-width-modulated
Reference frame
Supercapacitor energy storages
Voltage source converter (VSC)
Power control
topic Passivity-based control (PBC)
Supercapacitor energy storage system (SCES)
Voltage source converter (VSC)
Electric power system control
Energy storage
Supercapacitor
Active and Reactive Power
Closed loop stability
Hamiltonian formulations
Passivity based control
Pulse-width-modulated
Reference frame
Supercapacitor energy storages
Voltage source converter (VSC)
Power control
description This paper proposes a passivity-based control (PBC) applied to a supercapacitor energy storage system (SCES) with a single-phase pulse-width-modulated voltage source converter (VSC). The proposed strategy allows to control the interchange of active and reactive power between SCES and the distribution network using its natural reference frame. It also guarantees closed-loop stability in the sense of Lyapunov via a Hamiltonian formulation. Simulation results demonstrate the efficiency and robustness of the proposed control applied on a low-voltage single-phase distribution network under different operative conditions. © 2018 IEEE.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:32Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:32Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv 9th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2018 - Proceedings; pp. 1-4
dc.identifier.isbn.none.fl_str_mv 9781538623114
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8875
dc.identifier.doi.none.fl_str_mv 10.1109/LASCAS.2018.8399963
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56919564100
56207250200
37104976300
57190661793
identifier_str_mv 9th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2018 - Proceedings; pp. 1-4
9781538623114
10.1109/LASCAS.2018.8399963
Universidad Tecnológica de Bolívar
Repositorio UTB
56919564100
56207250200
37104976300
57190661793
url https://hdl.handle.net/20.500.12585/8875
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 25 February 2018 through 28 February 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050307343&doi=10.1109%2fLASCAS.2018.8399963&partnerID=40&md5=9734119f44ae0d2f7f5c96693b2c3c66
Scopus2-s2.0-85050307343
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 9th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8875/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021791722504192
spelling 2020-03-26T16:32:32Z2020-03-26T16:32:32Z20189th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2018 - Proceedings; pp. 1-49781538623114https://hdl.handle.net/20.500.12585/887510.1109/LASCAS.2018.8399963Universidad Tecnológica de BolívarRepositorio UTB56919564100562072502003710497630057190661793This paper proposes a passivity-based control (PBC) applied to a supercapacitor energy storage system (SCES) with a single-phase pulse-width-modulated voltage source converter (VSC). The proposed strategy allows to control the interchange of active and reactive power between SCES and the distribution network using its natural reference frame. It also guarantees closed-loop stability in the sense of Lyapunov via a Hamiltonian formulation. Simulation results demonstrate the efficiency and robustness of the proposed control applied on a low-voltage single-phase distribution network under different operative conditions. © 2018 IEEE.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Governmentet al.;Ibero-American Science and Technology Education Consortium (ISTEC);IEEE;IEEE Circuits and Systems Society (CAS);IEEE Council on Electronic Design Automation (CEDA);INAOEThis work is supported in part by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS), by calling contest 727-2015 and PhD program in Engineering of the Technological University of Pereira.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85050307343&doi=10.1109%2fLASCAS.2018.8399963&partnerID=40&md5=9734119f44ae0d2f7f5c96693b2c3c66Scopus2-s2.0-850503073439th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2018Apparent power control in single-phase grids using SCES devices: An IDA-PBC approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fPassivity-based control (PBC)Supercapacitor energy storage system (SCES)Voltage source converter (VSC)Electric power system controlEnergy storageSupercapacitorActive and Reactive PowerClosed loop stabilityHamiltonian formulationsPassivity based controlPulse-width-modulatedReference frameSupercapacitor energy storagesVoltage source converter (VSC)Power control25 February 2018 through 28 February 2018Montoya, Oscar DaniloRuiz A.G.Serra F.M.Magaldi G.Kalla, U.K., Singh, B., Murthy, S.S., Intelligent neural network-based controller for single-phase wind energy conversion system using two winding self-excited induction generator (2016) IEEE Trans. Ind. Inf, 12 (6), pp. 1986-1997. , DecGil-Gonźalez, W., Montoya, O.D., Garćes, A., Espinosa-Ṕerez, G., Ida-passivity-based control for superconducting magnetic energy storage with PWM-csc (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 89-95. , MarchAbeywardana, D.B.W., Hredzak, B., Agelidis, V.G., Single-phase grid-connected lifepobf4 battery-supercapacitor hybrid energy storage system with interleaved boost inverter (2015) IEEE Trans. Power Electron, 30 (10), pp. 5591-5604. , OctBahrani, B., Rufer, A., Kenzelmann, S., Lopes, L.A.C., Vector control of single-phase voltage-source converters based on fictive-Axis emulation (2011) IEEE Trans. Ind. Appl, 47 (2), pp. 831-840. , MarchJorge, S.G., Solsona, J.A., Busada, C.A., Control scheme for a single-phase grid-Tied voltage source converter with reduced number of sensors (2014) IEEE Trans. Power Electron, 29 (7), pp. 3758-3765. , JulyDel Puerto-Flores, D., Scherpen, J.M.A., Liserre, M., De Vries, M.M.J., Kransse, M.J., Monopoli, V.G., Passivity-based control by series/parallel damping of single-phase PWM voltage source converter (2014) IEEE Trans. Control Syst. Technol, 22 (4), pp. 1310-1322. , JulyShi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Delivery, 23 (4), pp. 2097-2104Khalil, H., (2013) Nonlinear Systems Ser. Always Learning Pearson Education LimitedSerra, F.M., Angelo, C.H.D., IDA-PBC controller design for grid connected Front End Converters under non-ideal grid conditions (2017) Electr. Power Syst. Res, 142, pp. 12-19Golestan, S., Guerrero, J., Vasquez, J., Single-phase plls: A review of recent advances (2017) IEEE Trans. Power Electron, (99), p. 1Golestan, S., Guerrero, J.M., Abusorrah, A., Al-Hindawi, M.M., Al-Turki, Y., An adaptive quadrature signal generation-based single-phase phase-locked loop for grid-connected applications (2017) IEEE Trans. Ind. Electron, 64 (4), pp. 2848-2854. , Aprilhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8875/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8875oai:repositorio.utb.edu.co:20.500.12585/88752023-05-25 16:27:37.284Repositorio Institucional UTBrepositorioutb@utb.edu.co