A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations
A new integration method named the Radial Basis Integration Method (RBIM) that include the Kriging Integration Method (KIM) Narváez and Useche (2020) as a particular case and performs boundary only offline precomputations for the creation of a meshless quadrature was developed for its application in...
- Autores:
-
Narvaez, Alexander
Useche Vivero, Jairo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10694
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10694
https://doi.org/10.1016/j.enganabound.2021.12.005
- Palabra clave:
- Domain integration
Boundary element method
Radial basis integration method
Dual reciprocity boundary element method
(DR-BEM)
Scalar wave equation
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_4c6ede14e42b9319c4b81751289367e5 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10694 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations |
title |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations |
spellingShingle |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations Domain integration Boundary element method Radial basis integration method Dual reciprocity boundary element method (DR-BEM) Scalar wave equation LEMB |
title_short |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations |
title_full |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations |
title_fullStr |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations |
title_full_unstemmed |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations |
title_sort |
A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations |
dc.creator.fl_str_mv |
Narvaez, Alexander Useche Vivero, Jairo |
dc.contributor.author.none.fl_str_mv |
Narvaez, Alexander Useche Vivero, Jairo |
dc.subject.keywords.spa.fl_str_mv |
Domain integration Boundary element method Radial basis integration method Dual reciprocity boundary element method (DR-BEM) Scalar wave equation |
topic |
Domain integration Boundary element method Radial basis integration method Dual reciprocity boundary element method (DR-BEM) Scalar wave equation LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
A new integration method named the Radial Basis Integration Method (RBIM) that include the Kriging Integration Method (KIM) Narváez and Useche (2020) as a particular case and performs boundary only offline precomputations for the creation of a meshless quadrature was developed for its application in boundary elements. Herein, as in DR-BEM, the inertial term is approximated using radial basis functions, however, its particular solution is not needed. The quadrature is now obtained in a simpler way than in KIM, because the evaluations of domain integrals necessary to compute the weights of quadrature points, is done transforming those to the boundary instead of using the Cartesian Transformation Method. Using RBIM, weakly singular domain integrals may be computed with good accuracy over complex domains. The results obtained in some scalar wave propagation problems using both Houbolt-a and Newmark-a time marching methods show that this procedure can be even more accurate than other used in BEM analysis |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-05-18T21:44:51Z |
dc.date.available.none.fl_str_mv |
2022-05-18T21:44:51Z |
dc.date.issued.none.fl_str_mv |
2022-01-10 |
dc.date.submitted.none.fl_str_mv |
2022-05-18 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Narvaez, Alexander & Useche, Jairo. (2022). A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations. Engineering Analysis with Boundary Elements. 136. 77-92. 10.1016/j.enganabound.2021.12.005. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10694 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.enganabound.2021.12.005 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Narvaez, Alexander & Useche, Jairo. (2022). A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations. Engineering Analysis with Boundary Elements. 136. 77-92. 10.1016/j.enganabound.2021.12.005. Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10694 https://doi.org/10.1016/j.enganabound.2021.12.005 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
16 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Engineering Analysis with Boundary Elements - Vol. 136 (2022) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/1/1-s2.0-S0955799721003581-main.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/4/1-s2.0-S0955799721003581-main.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/5/1-s2.0-S0955799721003581-main.pdf.jpg |
bitstream.checksum.fl_str_mv |
e20ad307a1c5f3f25af9304a7a7c86b6 a072acda45f34bf645abdcb676384f8d 4460e5956bc1d1639be9ae6146a50347 2278a4ce011b1a6291d581d72827876f ef6fdf83c9e45378757e8e3dbc5c46ee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021736146927616 |
spelling |
Narvaez, Alexander8e5a115e-5dad-4bab-ad3f-0f3358e6dc99Useche Vivero, Jairofa4e9db4-a773-4bc3-a3bb-c992f7e97f022022-05-18T21:44:51Z2022-05-18T21:44:51Z2022-01-102022-05-18Narvaez, Alexander & Useche, Jairo. (2022). A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equations. Engineering Analysis with Boundary Elements. 136. 77-92. 10.1016/j.enganabound.2021.12.005.https://hdl.handle.net/20.500.12585/10694https://doi.org/10.1016/j.enganabound.2021.12.005Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarA new integration method named the Radial Basis Integration Method (RBIM) that include the Kriging Integration Method (KIM) Narváez and Useche (2020) as a particular case and performs boundary only offline precomputations for the creation of a meshless quadrature was developed for its application in boundary elements. Herein, as in DR-BEM, the inertial term is approximated using radial basis functions, however, its particular solution is not needed. The quadrature is now obtained in a simpler way than in KIM, because the evaluations of domain integrals necessary to compute the weights of quadrature points, is done transforming those to the boundary instead of using the Cartesian Transformation Method. Using RBIM, weakly singular domain integrals may be computed with good accuracy over complex domains. The results obtained in some scalar wave propagation problems using both Houbolt-a and Newmark-a time marching methods show that this procedure can be even more accurate than other used in BEM analysis16 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Engineering Analysis with Boundary Elements - Vol. 136 (2022)A new radial basis integration method applied to the boundary element analysis of 2D scalar wave equationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Domain integrationBoundary element methodRadial basis integration methodDual reciprocity boundary element method(DR-BEM)Scalar wave equationLEMBCartagena de IndiasDallner R., Kuhn G. Efficient evaluation of volume integrals in the boundary element method Comput Methods Appl Mech Engrg, 109 (1) (1993), pp. 95-109, 10.1016/0045-7825(93)90226-N URL https://www.sciencedirect.com/science/article/pii/004578259390226NCarrer J.A.M., Mansur W.J., Vanzuit R.J. Scalar wave equation by the boundary element method: a D-BEM approach with non-homogeneous initial conditions Comput. Mech, 44 (1) (2009), p. 31, 10.1007/s00466-008-0353-4Carrer J.A.M., Mansur W.J. Scalar wave equation by the boundary element method: a D-BEM approach with constant time-weighting functions. Internat J Numer Methods Engrg, 81 (10) (2010), pp. 1281-1297, 10.1002/nme.2732Ding J., Ye W. A grid-based integral approach for quasilinear problems Comput Mech, 38 (2) (2006), pp. 113-118Koehler M., Yang R., Gray L.J. Cell-based volume integration for boundary integral analysis Internat J Numer Methods Engrg, 90 (7) (2012), pp. 915-927Wang Q., Zhou W., Cheng Y., Ma G., Chang X., Huang Q. An adaptive cell-based domain integration method for treatment of domain integrals in 3D boundary element method for potential and elasticity problems Acta Mech Solida Sin, 30 (1) (2017), pp. 99-111, 10.1016/j.camss.2016.08.002 URL https://www.sciencedirect.com/science/article/pii/S0894916616300751Nardini D., Brebbia C. A new approach to free vibration analysis using boundary elements Appl Math Model, 7 (1983), pp. 157-162Partridge P.W., Brebbia C.A. Computer implementation of the BEM dual reciprocity method for the solution of general field equations Commun Appl Numer Methods, 6 (2) (1990), pp. 83-92, 10.1002/cnm.1630060204Agnantiaris J., Polyzos D., Beskos D. Some studies on dual reciprocity BEM for elastodynamic analysis Comput Mech, 17 (4) (1996), pp. 270-277Partridge P.W., Brebbia C.A., et al. Dual reciprocity boundary element method Springer Science & Business Media (2012)Useche J., Narvaez A. Vibrational response of elastic membranes coupled to acoustic fluids using a BEM–BEM formulation De Clerck J. (Ed.), Topics in modal analysis I, vol. 7, Springer International Publishing, Cham (2014), pp. 333-340Useche J. Vibration analysis of shear deformable shallow shells using the boundary element method Eng Struct, 62–63 (2014), pp. 65-74, 10.1016/j.engstruct.2014.01.010Useche J., Alvarez H. Elastodynamic analysis of thick multilayer composite plates by the boundary element method CMES-Comput Model Eng Sci, 107 (4) (2015), pp. 277-296Ochiai Y., Sladek V., Sladek J. Transient heat conduction analysis by triple-reciprocity boundary element method Eng Anal Bound Elem, 30 (2006), pp. 194-204, 10.1016/j.enganabound.2005.07.010Guo S., Wu Q., Li H.-G., Kuidong G. Triple reciprocity method for unknown function’s domain integral in boundary integral equation Eng Anal Bound Elem, 113 (2020), pp. 170-180, 10.1016/j.enganabound.2019.12.014Nowak A., Brebbia C. The multiple-reciprocity method. a new approach for transforming bem domain integrals to the boundary Eng Anal Bound Elem, 6 (3) (1989), pp. 164-167Nowak A. The multiple reciprocity boundary element method Computational Mechanics Publication, Southampton (1994), pp. 1-41Ochiai Y., Sekiya T. Steady thermal stress analysis by improved multiple-reciprocity boundary element method J. Therm Stresses, 18 (6) (1995), pp. 603-620Ochiai Y., Sekiya T. Steady heat conduction analysis by improved multiple-reciprocity boundary element method Eng Anal Bound Elem, 18 (2) (1996), pp. 111-117Gao X.-W. The radial integration method for evaluation of domain integrals with boundary-only discretization Eng Anal Bound Elem, 26 (10) (2002), pp. 905-916Loeffler C., Cruz A., Bulcão A. Direct use of radial basis interpolation functions for modelling source terms with the boundary element method Eng Anal Bound Elem, 50 (2015), pp. 97-108, 10.1016/j.enganabound.2014.07.007Gao X.-W. Evaluation of regular and singular domain integrals with boundary-only discretization—theory and fortran code J Comput Appl Math, 175 (2) (2005), pp. 265-290Gipson G. The coupling of Monte Carlo integration with boundary integral techniques to solve Poisson-type problems Eng Anal, 2 (3) (1985), pp. 138-145Kagawa Y., Murai T. Use of Monte Carlo method for singular integral evaluation in boundary elements COMPEL (1991)Rosca V.E., ao V.M.L. Quasi-Monte Carlo mesh-free integration for meshless weak formulations Eng Anal Bound Elem, 32 (6) (2008), pp. 471-479, 10.1016/j.enganabound.2007.10.015 Meshless MethodsHematiyan M. A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM Comput Mech, 39 (4) (2007), pp. 509-520Narváez A., Useche J. The kriging integration method applied to the boundary element analysis of Poisson problems Eng Anal Bound Elem, 121 (2020), pp. 1-20, 10.1016/j.enganabound.2020.09.001Houbolt J.C. A recurrence matrix solution for the dynamic response of elastic aircraft J Aeronaut Sci, 17 (9) (1950), pp. 540-550Newmark N.M. A method of computation for structural dynamics J Eng Mech Div, 85 (3) (1959), pp. 67-94Yu G., Mansur W.J., Carrer J.A.M., Gong L. A linear method applied to 2D time-domain BEM Commun Numer Methods Eng, 14 (12) (1998), pp. 1171-1179, 10.1002/(SICI)1099-0887(199812)14:12¡1171::AID-CNM217¿3.0.CO;2-G URL https://onlinelibrary.wiley.com/doi/abs/10.1002/Chen W., Tanaka M. A study on time schemes for DRBEM analysis of elastic impact wave Comput Mech, 28 (2002), pp. 331-338, 10.1007/s00466-001-0297-4Carrer J., Mansur W. Alternative time-marching schemes for elastodynamic analysis with the domain boundary element method formulation Comput Mech, 34 (2004), pp. 387-399, 10.1007/s00466-004-0582-0Oyarzún P., Loureiro F., Carrer J., Mansur W. A time-stepping scheme based on numerical green’s functions for the domain boundary element method: The exga-DBEM newmark approach Eng. Anal. Bound. Elem., 35 (2011), pp. 533-542, 10.1016/j.enganabound.2010.08.015Najarzadeh L., Movahedian B., Azhari M. Numerical solution of scalar wave equation by the modified radial integration boundary element method Eng Anal Bound Elem, 105 (2019), pp. 267-278, 10.1016/j.enganabound.2019.04.027 URL https://www.sciencedirect.com/science/article/pii/S095579971830701XQu S., Li S., Chen H.-R., Qu Z. Radial integration boundary element method for acoustic eigenvalue problems Eng Anal Bound Elem, 37 (7) (2013), pp. 1043-1051, 10.1016/j.enganabound.2013.03.016AL-Jawary M.A., Wrobel L.C. Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods Int J Comput Math, 89 (11) (2012), pp. 1463-1487, 10.1080/00207160.2012.667087Campos L.S., Loeffler C.F., Netto F.O., de Jesus dos Santos A. Testing the accomplishment of the radial integration method with the direct interpolation boundary element technique for solving Helmholtz problems Eng Anal Bound Elem, 110 (2020), pp. 16-23, 10.1016/j.enganabound.2019.09.022Gandomkar M., Dibajian S., Farzin M., Hashemolhoseini S. An integration procedure for meshless methods using kriging interpolations Indian J Sci Technol, 6 (1) (2013), pp. 3859-3867Wrobel L.C. Boundary element method, volume 1: Applications in thermo-fluids and acoustics, vol. 1 John Wiley & Sons (2002)Katsikadelis J.T. The boundary element method for engineers and scientists (2nd Ed.), Academic Press, Oxford (2016)Slak J., Kosec G. On generation of node distributions for meshless PDE discretizations SIAM J Sci Comput, 41 (2019), 10.1137/18M1231456Gu Y., Wang Q., Lam K. A meshless local kriging method for large deformation analyses Comput Methods Appl Mech Engrg, 196 (9–12) (2007), pp. 1673-1684Wang J., Liu G. On the optimal shape parameters of radial basis functions used for 2-D meshless methods Comput Methods Appl Mech Engrg, 191 (23–24) (2002), pp. 2611-2630Punzi A., Sommariva A., Vianello M. Meshless cubature over the disk using thin-plate splines J Comput Appl Math, 221 (2) (2008), pp. 430-436, 10.1016/j.cam.2007.10.023 URL https://www.sciencedirect.com/science/article/pii/S0377042707005742, Special Issue: Recent Progress in Spline and Wavelet ApproximationNajarzadeh L., Movahedian B., Azhari M. Stability analysis of the thin plates with arbitrary shapes subjected to non-uniform stress fields using boundary element and radial integration methods Eng Anal Bound Elem, 87 (2018), pp. 111-121, 10.1016/j.enganabound.2017.11.010Young D., Gu M., Fan C. The time-marching method of fundamental solutions for wave equations Eng Anal Bound Elem, 33 (12) (2009), pp. 1411-1425, 10.1016/j.enganabound.2009.05.008 URL https://www.sciencedirect.com/science/article/pii/S0955799709001374, Special Issue on the Method of Fundamental Solutions in honour of Professor Michael GolbergLoeffler C., Mansur W., Barcelos H., Bulcão A. Solving Helmholtz problems with the boundary element method using direct radial basis function interpolation Eng Anal Bound Elem, 61 (2015), pp. 218-225, 10.1016/j.enganabound.2015.07.013Uğurlu B. A dual reciprocity boundary element solution method for the free vibration analysis of fluid-coupled kirchhoff plates J Sound Vib, 340 (2015), pp. 190-210, 10.1016/j.jsv.2014.12.011Chanthawara K., Kaennakham S., Toutip W. The numerical study and comparison of radial basis functions in applications of the dual reciprocity boundary element method to convection-diffusion problems 1705 (2016), Article 020029, 10.1063/1.4940277Barbosa J., Loeffler C., Lara L. The direct interpolation boundary element technique applied to three-dimensional scalar free vibration problems Eng Anal Bound Elem, 108 (2019), pp. 295-300, 10.1016/j.enganabound.2019.09.002http://purl.org/coar/resource_type/c_2df8fbb1LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL1-s2.0-S0955799721003581-main.pdf1-s2.0-S0955799721003581-main.pdfapplication/pdf2466033https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/1/1-s2.0-S0955799721003581-main.pdfa072acda45f34bf645abdcb676384f8dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXT1-s2.0-S0955799721003581-main.pdf.txt1-s2.0-S0955799721003581-main.pdf.txtExtracted texttext/plain62340https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/4/1-s2.0-S0955799721003581-main.pdf.txt2278a4ce011b1a6291d581d72827876fMD54THUMBNAIL1-s2.0-S0955799721003581-main.pdf.jpg1-s2.0-S0955799721003581-main.pdf.jpgGenerated Thumbnailimage/jpeg111719https://repositorio.utb.edu.co/bitstream/20.500.12585/10694/5/1-s2.0-S0955799721003581-main.pdf.jpgef6fdf83c9e45378757e8e3dbc5c46eeMD5520.500.12585/10694oai:repositorio.utb.edu.co:20.500.12585/106942023-04-24 09:19:28.656Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |