An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks

Applying the Horský-Mitskievitch conjecture to the empty space solutions of Morgan and Morgan due to the gravitational field of a finite disk, we have obtained the corresponding solutions of the Einstein-Maxwell equations. The resulting expressions are simply written in terms of oblate spheroidal co...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9099
Acceso en línea:
https://hdl.handle.net/20.500.12585/9099
Palabra clave:
Einstein Maxwell equations
Exact solutions
Relativistic disks
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_4c642de1f066bae1c1cfec182793495e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9099
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
title An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
spellingShingle An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
Einstein Maxwell equations
Exact solutions
Relativistic disks
title_short An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
title_full An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
title_fullStr An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
title_full_unstemmed An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
title_sort An Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disks
dc.subject.keywords.none.fl_str_mv Einstein Maxwell equations
Exact solutions
Relativistic disks
topic Einstein Maxwell equations
Exact solutions
Relativistic disks
description Applying the Horský-Mitskievitch conjecture to the empty space solutions of Morgan and Morgan due to the gravitational field of a finite disk, we have obtained the corresponding solutions of the Einstein-Maxwell equations. The resulting expressions are simply written in terms of oblate spheroidal coordinates and the solutions represent fields due to magnetized static thin disk of finite extension. Now, although the solutions are not asymptotically flat, the masses of the disks are finite and the energy-momentum tensor agrees with the energy conditions. Furthermore, the magnetic field and the circular velocity show an acceptable physical behavior. © 2011 Springer Science+Business Media, LLC.
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:56Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:56Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv International Journal of Theoretical Physics; Vol. 51, Núm. 6; pp. 1737-1752
dc.identifier.issn.none.fl_str_mv 00207748
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9099
dc.identifier.doi.none.fl_str_mv 10.1007/s10773-011-1051-0
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 25225467000
7202571265
identifier_str_mv International Journal of Theoretical Physics; Vol. 51, Núm. 6; pp. 1737-1752
00207748
10.1007/s10773-011-1051-0
Universidad Tecnológica de Bolívar
Repositorio UTB
25225467000
7202571265
url https://hdl.handle.net/20.500.12585/9099
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84860603769&doi=10.1007%2fs10773-011-1051-0&partnerID=40&md5=b8fd40110427cf05a683adfb0838891a
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9099/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021573952143360
spelling 2020-03-26T16:32:56Z2020-03-26T16:32:56Z2012International Journal of Theoretical Physics; Vol. 51, Núm. 6; pp. 1737-175200207748https://hdl.handle.net/20.500.12585/909910.1007/s10773-011-1051-0Universidad Tecnológica de BolívarRepositorio UTB252254670007202571265Applying the Horský-Mitskievitch conjecture to the empty space solutions of Morgan and Morgan due to the gravitational field of a finite disk, we have obtained the corresponding solutions of the Einstein-Maxwell equations. The resulting expressions are simply written in terms of oblate spheroidal coordinates and the solutions represent fields due to magnetized static thin disk of finite extension. Now, although the solutions are not asymptotically flat, the masses of the disks are finite and the energy-momentum tensor agrees with the energy conditions. Furthermore, the magnetic field and the circular velocity show an acceptable physical behavior. © 2011 Springer Science+Business Media, LLC.Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIASA.C. G.-P. wants to acknowledge financial support from COLCIENCIAS, Colombia.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84860603769&doi=10.1007%2fs10773-011-1051-0&partnerID=40&md5=b8fd40110427cf05a683adfb0838891aAn Infinite Family of Magnetized Morgan-Morgan Relativistic Thin Disksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Einstein Maxwell equationsExact solutionsRelativistic disksGutiérrez-Piñeres A.C.González G.A.Bonnor, W.B., Sackfield, A., (1968) Commun. Math. Phys., 8, p. 338Morgan, T., Morgan, L., (1969) Phys. Rev., 183, p. 1097Morgan, L., Morgan, T., (1970) Phys. Rev. D, Part. Fields, 2, p. 2756Voorhees, B.H., (1972) Phys. Rev. D, Part. Fields, 5, p. 2413Lynden-Bell, D., Pineault, S., (1978) Mon. Not. R. Astron. Soc., 185, p. 679Chamorro, A., Gregory, R., Stewart, J.M., (1987) Proc. - Royal Soc., Math. Phys. Eng. Sci., 413, p. 251Letelier, P.S., Oliveira, S.R., (1987) J. Math. Phys., 28, p. 165Lemos, J.P.S., (1989) Class. Quantum Gravity, 6, p. 1219Bičák, J., Lynden-Bell, D., Katz, J., (1993) Phys. Rev. D, Part. Fields, 47, p. 4334Bičák, J., Lynden-Bell, D., Pichon, C., (1993) Mon. Not. R. Astron. Soc., 265, p. 126González, G.A., Letelier, P.S., (1999) Class. Quantum Gravity, 16, p. 479González, G.A., Espitia, O.A., (2003) Phys. Rev. D, Part. Fields, 68 (10). , 104028González, G.A., Gutiérrez-Piñeres, A.C., Viña-Cervantes, V.M., (2009) Phys. Rev. D, Part. Fields, 79 (12). , 124048Lynden-Bell, D., Pineault, S., (1978) Mon. Not. R. Astron. Soc., 185, p. 695Bičák, J., Ledvinka, T., (1993) Phys. Rev. Lett., 71, p. 1669Pichon, C., Lynden-Bell, D., (1996) Mon. Not. R. Astron. Soc., 280, p. 1007González, G.A., Letelier, P.S., (2000) Phys. Rev. D, Part. Fields, 62 (6). , 064025Lemos, J.P.S., Letelier, P.S., (1993) Class. Quantum Gravity, 10, pp. L75Lemos, J.P.S., Letelier, P.S., (1994) Phys. Rev. D, Part. Fields, 49, p. 5135Lemos, J.P.S., Letelier, P.S., (1996) Int. J. Mod. Phys. D, 5, p. 53Semerák, O., Žáček, M., (2000) Class. Quantum Gravity, 17, p. 1613Semerák, O., (2002) Class. Quantum Gravity, 19, p. 3829Žáček, M., Semerák, O., (2002) Czechoslov. J. Phys., 52, p. 19Semerák, O., (2003) Class. Quantum Gravity, 20, p. 1613Semerák, O., (2004) Class. Quantum Gravity, 21, p. 2203Karas, V., Huré, J., Semerák, O., (2004) Class. Quantum Gravity, 21, p. 1Feinstein, A., Ibañez, J., Lazkoz, R., (1998) Astrophys. J., 495, p. 131Vogt, D., Letelier, P.S., (2003) Phys. Rev. D, Part. Fields, 68 (8). , 084010Ujevic, M., Letelier, P.S., (2004) Phys. Rev. D, Part. Fields, 70 (8). , 084015Ledvinka, T., Zofka, M., Bicák, J., (1999) Recent Developments In Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, , In: Piran T., Ruffini, R. (eds.)García-Reyes, G., González, G.A., (2007) Braz. J. Phys., 37, p. 1094Letelier, P.S., (1999) Phys. Rev. D, Part. Fields, 60 (10). , 104042Vogt, D., Letelier, P.S., (2004) Class. Quantum Gravity, 21, p. 3369Katz, J., Bičák, J., Lynden-Bell, D., (1999) Class. Quantum Gravity, 16, p. 4023González, G.A., Gutiérrez-Piñeres, A.C., Ospina, P.A., (2008) Phys. Rev. D, Part. Fields, 78 (6). , 064058García, G.R., González, G.A., (2004) Phys. Rev. D, Part. Fields, 69 (12). , 124002Vogt, D., Letelier, P.S., (2004) Phys. Rev. D, Part. Fields, 70 (6). , 064003García-Reyes, G., González, G.A., (2004) Class. Quantum Gravity, 21, p. 4845García-Reyes, G., González, G.A., (2004) Phys. Rev. D, Part. Fields, 70 (10). , 104005Horský, J., Mitskievitch, N.V., Czechoslovak (1989) J. Phys., 39, p. 957Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Herlt, E., (2003) Exact Solutions of Einstein's Field Equations, , 2nd edn., Cambridge: Cambridge University PressPapapetrou, A., Hamoui, A., (1968) Ann. Inst. Henri Poincaré, a Phys. Théor., 9, p. 179Lichnerowicz, A., (1971) C.R. Acad. Sci., 273, p. 528Taub, A.H., (1980) J. Math. Phys., 21, p. 1423Israel, W., (1966) Nuovo Cim., B, 44, p. 1Israel, W., (1967) Nuovo Cim., B, 48, p. 463Poisson, E., (2004) A Relativist's Toolkit: The Mathematics of Black-Hole Mechanics, , Cambridge: Cambridge University PressRichterek, L., Novotný, J., Horský, J., (2000) Czechoslov. J. Phys., 50, p. 925Richterek, L., Horský, J., (2004) Czechoslov. J. Phys., 54, p. 1451Arfken, G.B., Weber, H.J., (2001) Mathematical Methods for Physicists, , 5th edn., San Diego: Academic PressMorse, P.M., Feshbach, H., (1953) Methods of Theoretical Physics, , International Series in Pure and Applied Physics, New York: McGraw-HillGonzález, G.A., Reina, J.I., (2006) Mon. Not. R. Astron. Soc., 371, p. 1873Semerák, O., (2001) Class. Quantum Gravity, 18, p. 3589Nakahara, M., Brewer, D.F., (2003) Geometry, Topology and Physics, 2nd edn., Bristol: IOPhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9099/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9099oai:repositorio.utb.edu.co:20.500.12585/90992021-02-02 15:28:55.065Repositorio Institucional UTBrepositorioutb@utb.edu.co