A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images

Accurate detection of clouds and shadows present in optical imagery is important in remote sensing for ensuring data quality and reliability. This study introduces a deep learning model capable of generating precise cloud and shadows masks for subsequent filtering. Unlike other works in literature,...

Full description

Autores:
Arrechea-Castillo, Darwin Alexis
Solano-Correa, Yady Tatiana
Muñoz-Ordoñez, Julián Fernando
Pencue-Fierro, Edgar Leonairo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12731
Acceso en línea:
https://hdl.handle.net/20.500.12585/12731
Palabra clave:
Cloud Detection
Cloud Shadow Detection
Deep Learning
Remote Sensing
MultiSensor
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_48a738187951b67fb85473f5d20d2f3d
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12731
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
title A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
spellingShingle A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
Cloud Detection
Cloud Shadow Detection
Deep Learning
Remote Sensing
MultiSensor
LEMB
title_short A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
title_full A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
title_fullStr A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
title_full_unstemmed A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
title_sort A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images
dc.creator.fl_str_mv Arrechea-Castillo, Darwin Alexis
Solano-Correa, Yady Tatiana
Muñoz-Ordoñez, Julián Fernando
Pencue-Fierro, Edgar Leonairo
dc.contributor.author.none.fl_str_mv Arrechea-Castillo, Darwin Alexis
Solano-Correa, Yady Tatiana
Muñoz-Ordoñez, Julián Fernando
Pencue-Fierro, Edgar Leonairo
dc.subject.keywords.spa.fl_str_mv Cloud Detection
Cloud Shadow Detection
Deep Learning
Remote Sensing
MultiSensor
topic Cloud Detection
Cloud Shadow Detection
Deep Learning
Remote Sensing
MultiSensor
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Accurate detection of clouds and shadows present in optical imagery is important in remote sensing for ensuring data quality and reliability. This study introduces a deep learning model capable of generating precise cloud and shadows masks for subsequent filtering. Unlike other works in literature, this model operates efficiently across diverse temporalities, sensors, and spatial resolutions, without the need for any relative or absolute transformation of the original data. This versatility, to date unreported in the literature, marks a significant advancement in the field. The model utilizes data from PlanetScope, Landsat and Sentinel-2 sensors and is based on a simplified convolutional neural network (CNN) architecture, LeNet, which facilitates easy training on standard computers with minimal time requirements. Despite its simplicity, the model demonstrates robustness, achieving accuracy metrics over 96% in validation data. These results show the model potential in transforming cloud and shadow detection in remote sensing, combining ease of use with high accuracy.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-12T14:01:02Z
dc.date.available.none.fl_str_mv 2024-09-12T14:01:02Z
dc.date.issued.none.fl_str_mv 2024-07-12
dc.date.submitted.none.fl_str_mv 2024-09-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_c94f
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv D.A. Arrechea-Castillo; Y. T. Solano-Correa; J.F. Muñoz-Ordóñez; E. L. Pencue-Fierro, "A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10640766.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12731
dc.identifier.doi.none.fl_str_mv 10.1109/IGARSS53475.2024.10640766
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv D.A. Arrechea-Castillo; Y. T. Solano-Correa; J.F. Muñoz-Ordóñez; E. L. Pencue-Fierro, "A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10640766.
10.1109/IGARSS53475.2024.10640766
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12731
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 4 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ciencias Básicas
dc.source.spa.fl_str_mv IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/1/2024-C-A%20Deep%20Learning%20Approach%20To%20Cloud%20And%20Shadow%20Detection%20In%20Multiresolution%2c%20Multitemporal%20And%20Multisensor%20Images.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/3/2024-C-A%20Deep%20Learning%20Approach%20To%20Cloud%20And%20Shadow%20Detection%20In%20Multiresolution%2c%20Multitemporal%20And%20Multisensor%20Images.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/4/2024-C-A%20Deep%20Learning%20Approach%20To%20Cloud%20And%20Shadow%20Detection%20In%20Multiresolution%2c%20Multitemporal%20And%20Multisensor%20Images.pdf.jpg
bitstream.checksum.fl_str_mv 6bef9e581ad51e62fe66410dba224f76
e20ad307a1c5f3f25af9304a7a7c86b6
3e07ef705e21b7dd66f291770c12fa51
5f5ac0b2ace95a84bc1a5ad3b7d7e9af
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021600415055872
spelling Arrechea-Castillo, Darwin Alexis93ac81fe-17eb-4bd1-a2fc-f39f13cc9af2Solano-Correa, Yady Tatiana64432ee7-11fa-4bfb-b643-143125ef82c1Muñoz-Ordoñez, Julián Fernandoe41bd21d-9782-40e9-8351-aeeaa10fa1adPencue-Fierro, Edgar Leonairo6964c8f9-622b-4193-9015-e2dbfaf051272024-09-12T14:01:02Z2024-09-12T14:01:02Z2024-07-122024-09-11D.A. Arrechea-Castillo; Y. T. Solano-Correa; J.F. Muñoz-Ordóñez; E. L. Pencue-Fierro, "A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10640766.https://hdl.handle.net/20.500.12585/1273110.1109/IGARSS53475.2024.10640766Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarAccurate detection of clouds and shadows present in optical imagery is important in remote sensing for ensuring data quality and reliability. This study introduces a deep learning model capable of generating precise cloud and shadows masks for subsequent filtering. Unlike other works in literature, this model operates efficiently across diverse temporalities, sensors, and spatial resolutions, without the need for any relative or absolute transformation of the original data. This versatility, to date unreported in the literature, marks a significant advancement in the field. The model utilizes data from PlanetScope, Landsat and Sentinel-2 sensors and is based on a simplified convolutional neural network (CNN) architecture, LeNet, which facilitates easy training on standard computers with minimal time requirements. Despite its simplicity, the model demonstrates robustness, achieving accuracy metrics over 96% in validation data. These results show the model potential in transforming cloud and shadow detection in remote sensing, combining ease of use with high accuracy.4 páginasapplication/pdfengIEEE International Geoscience and Remote Sensing Symposium (IGARSS)A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Imagesinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_c94fhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Cloud DetectionCloud Shadow DetectionDeep LearningRemote SensingMultiSensorLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasCiencias BásicasInvestigadoresZ. Li, H. Shen, Q. Weng, Y. Zhang, P. Dou, and L. Zhang, “Cloud and cloud shadow detection for optical satellite imagery: Features, algorithms, validation, and prospects,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 188, pp. 89–108, 2022.R. Gupta and S. J. Nanda, “Cloud detection in satellite images with classical and deep neural network approach: A review,” Multimedia Tools and Applications, vol. 81, no. 22, pp. 31847–31880, 2022.A. Francis, P. Sidiropoulos, and J.-P. Muller, “Cloud- FCN: Accurate and Robust Cloud Detection for Satellite Imagery with Deep Learning,” Remote Sensing, vol. 11, no. 19, p. 2312, 2019.M. Khoshboresh-Masouleh and R. Shah-Hosseini, “A Deep Learning Method for Near-Real-Time Cloud and Cloud Shadow Segmentation from Gaofen-1 Images,” Computational Intelligence and Neuroscience, vol. 2020, p. e8811630, 2020.K. Xu, K. Guan, J. Peng, Y. Luo, and S. Wang, “Deep- Mask: An algorithm for cloud and cloud shadow detection in optical satellite remote sensing images using deep residual network,” 2019.H. Zhai, H. Zhang, L. Zhang, and P. Li, “Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 144, pp. 235–253, 2018.D. P. Roy, H. Huang, R. Houborg, and V. S. Martins, “A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery,” Remote Sensing of Environment, vol. 264, no. 112586, p. 21, 2021.Z. Li, H. Shen, Q. Cheng, Y. Liu, S. You, and Z. He, “Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors,” Isprs Journal of Photogrammetry and Remote Sensing, vol. 150, pp. 197–212, 2019.S. Mahajan and B. Fataniya, “Cloud detection methodologies: Variants and development—a review,” Complex & Intelligent Systems, vol. 6, no. 2, pp. 251–261, 2020.N. Ma, L. Sun, C. Zhou, and Y. He, “Cloud Detection Algorithm for Multi-Satellite Remote Sensing Imagery Based on a Spectral Library and 1D Convolutional Neural Network,” REMOTE SENSING, vol. 13, no. 16, p. 3319, 2021.D. Montero, C. Aybar, M. D. Mahecha, F. Martinuzzi, M. S¨ochting, and S.Wieneke, “A standardized catalogue of spectral indices to advance the use of remote sensing in Earth system research,” Scientific Data, vol. 10, no. 1, p. 197, 2023.X. Xiang, K. Li, B. Huang, and Y. Cao, “A Multi- Sensor Data-Fusion Method Based on Cloud Model and Improved Evidence Theory,” Sensors, vol. 22, no. 15, p. 5902, 2022.PLANET.COM, “Planet Imagery Product Specifications,” 2022.D. A. Arrechea-Castillo, Y. T. Solano-Correa, J. F. Mu˜noz-Ord´o˜nez, E. L. Pencue-Fierro, and A. Figueroa- Casas, “Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning,” Remote Sensing, vol. 15, no. 10, p. 2521, 2023.http://purl.org/coar/resource_type/c_c94fORIGINAL2024-C-A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images.pdf2024-C-A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images.pdfapplication/pdf2769075https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/1/2024-C-A%20Deep%20Learning%20Approach%20To%20Cloud%20And%20Shadow%20Detection%20In%20Multiresolution%2c%20Multitemporal%20And%20Multisensor%20Images.pdf6bef9e581ad51e62fe66410dba224f76MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT2024-C-A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images.pdf.txt2024-C-A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images.pdf.txtExtracted texttext/plain18253https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/3/2024-C-A%20Deep%20Learning%20Approach%20To%20Cloud%20And%20Shadow%20Detection%20In%20Multiresolution%2c%20Multitemporal%20And%20Multisensor%20Images.pdf.txt3e07ef705e21b7dd66f291770c12fa51MD53THUMBNAIL2024-C-A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images.pdf.jpg2024-C-A Deep Learning Approach To Cloud And Shadow Detection In Multiresolution, Multitemporal And Multisensor Images.pdf.jpgGenerated Thumbnailimage/jpeg9848https://repositorio.utb.edu.co/bitstream/20.500.12585/12731/4/2024-C-A%20Deep%20Learning%20Approach%20To%20Cloud%20And%20Shadow%20Detection%20In%20Multiresolution%2c%20Multitemporal%20And%20Multisensor%20Images.pdf.jpg5f5ac0b2ace95a84bc1a5ad3b7d7e9afMD5420.500.12585/12731oai:repositorio.utb.edu.co:20.500.12585/127312024-09-13 00:18:23.534Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=