A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals

The recognition of aggressive driving patterns could aid to improve driving safety and potentially reduce traffic fatalities on the roads. Driving behavior is strongly shaped by emotions and can be divided into two main categories: calmed (non-aggressive) and aggressive. In this paper, we present a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9167
Acceso en línea:
https://hdl.handle.net/20.500.12585/9167
Palabra clave:
Acceleration patterns
Biosignals
Driving behavior
Feature extraction
Automobile drivers
Digital storage
Electrophysiology
Feature extraction
Traffic surveys
Acceleration pattern
Aggressive driving
Aggressive driving behaviors
Biosignals
Driving behavior
Driving performance
Galvanic skin response
Traffic fatalities
Behavioral research
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_48605c80a47088e65fefabfdb91f6fdc
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9167
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
title A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
spellingShingle A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
Acceleration patterns
Biosignals
Driving behavior
Feature extraction
Automobile drivers
Digital storage
Electrophysiology
Feature extraction
Traffic surveys
Acceleration pattern
Aggressive driving
Aggressive driving behaviors
Biosignals
Driving behavior
Driving performance
Galvanic skin response
Traffic fatalities
Behavioral research
title_short A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
title_full A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
title_fullStr A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
title_full_unstemmed A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
title_sort A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignals
dc.contributor.editor.none.fl_str_mv Figueroa-Garcia J.C.
Duarte-Gonzalez M.
Jaramillo-Isaza S.
Orjuela-Canon A.D.
Diaz-Gutierrez Y.
dc.subject.keywords.none.fl_str_mv Acceleration patterns
Biosignals
Driving behavior
Feature extraction
Automobile drivers
Digital storage
Electrophysiology
Feature extraction
Traffic surveys
Acceleration pattern
Aggressive driving
Aggressive driving behaviors
Biosignals
Driving behavior
Driving performance
Galvanic skin response
Traffic fatalities
Behavioral research
topic Acceleration patterns
Biosignals
Driving behavior
Feature extraction
Automobile drivers
Digital storage
Electrophysiology
Feature extraction
Traffic surveys
Acceleration pattern
Aggressive driving
Aggressive driving behaviors
Biosignals
Driving behavior
Driving performance
Galvanic skin response
Traffic fatalities
Behavioral research
description The recognition of aggressive driving patterns could aid to improve driving safety and potentially reduce traffic fatalities on the roads. Driving behavior is strongly shaped by emotions and can be divided into two main categories: calmed (non-aggressive) and aggressive. In this paper, we present a methodology to recognize driving behavior using driving performance features and biosignals. We used biosensors to measure heart rate and galvanic skin response of fifteen volunteers while driving in a simulated scenario. They were asked to drive in two different situations to elicit calmed and aggressive driving behaviors. The purpose of this study was to determine if driving behavior can be assessed from biosignals and acceleration/braking events. From two-tailed student t-tests, the results suggest that it is possible to differentiate between aggressive and calmed driving behavior from biosignals and also from longitudinal vehicle’s data. © 2019, Springer Nature Switzerland AG.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:06Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:06Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 357-367
dc.identifier.isbn.none.fl_str_mv 9783030310189
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9167
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-31019-6_31
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56682770100
57205565967
57210822856
identifier_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 357-367
9783030310189
18650929
10.1007/978-3-030-31019-6_31
Universidad Tecnológica de Bolívar
Repositorio UTB
56682770100
57205565967
57210822856
url https://hdl.handle.net/20.500.12585/9167
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 16 October 2019 through 18 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075688427&doi=10.1007%2f978-3-030-31019-6_31&partnerID=40&md5=f7ed101058fc2d5b7a15c0fe2962c40c
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 6th Workshop on Engineering Applications, WEA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9167/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021790123425792
spelling Figueroa-Garcia J.C.Duarte-Gonzalez M.Jaramillo-Isaza S.Orjuela-Canon A.D.Diaz-Gutierrez Y.Domínguez Jiménez, Juan AntonioCampo Landines, KiaraContreras Ortiz, Sonia Helena2020-03-26T16:33:06Z2020-03-26T16:33:06Z2019Communications in Computer and Information Science; Vol. 1052, pp. 357-367978303031018918650929https://hdl.handle.net/20.500.12585/916710.1007/978-3-030-31019-6_31Universidad Tecnológica de BolívarRepositorio UTB566827701005720556596757210822856The recognition of aggressive driving patterns could aid to improve driving safety and potentially reduce traffic fatalities on the roads. Driving behavior is strongly shaped by emotions and can be divided into two main categories: calmed (non-aggressive) and aggressive. In this paper, we present a methodology to recognize driving behavior using driving performance features and biosignals. We used biosensors to measure heart rate and galvanic skin response of fifteen volunteers while driving in a simulated scenario. They were asked to drive in two different situations to elicit calmed and aggressive driving behaviors. The purpose of this study was to determine if driving behavior can be assessed from biosignals and acceleration/braking events. From two-tailed student t-tests, the results suggest that it is possible to differentiate between aggressive and calmed driving behavior from biosignals and also from longitudinal vehicle’s data. © 2019, Springer Nature Switzerland AG.Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075688427&doi=10.1007%2f978-3-030-31019-6_31&partnerID=40&md5=f7ed101058fc2d5b7a15c0fe2962c40c6th Workshop on Engineering Applications, WEA 2019A Methodology for Driving Behavior Recognition in Simulated Scenarios Using Biosignalsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAcceleration patternsBiosignalsDriving behaviorFeature extractionAutomobile driversDigital storageElectrophysiologyFeature extractionTraffic surveysAcceleration patternAggressive drivingAggressive driving behaviorsBiosignalsDriving behaviorDriving performanceGalvanic skin responseTraffic fatalitiesBehavioral research16 October 2019 through 18 October 2019Bradley, M.M., Lang, P.J., Measuring emotion: The self-assessment manikin and the semantic differential (1994) J. Behav. Ther. Exp. Psychiatry, 25 (1), pp. 49-59Cooper, C.L., Dewe, P.J., (2008) Stress: A Brief History, , Wiley, ChichesterDomínguez-Jiménez, J., Campo-Landines, K., Martínez-Santos, J., Contreras-Ortiz, S., Emotion detection through biomedical signals: A pilot study (2018) 14Th International Symposium on Medical Information Processing and Analysis, Vol. 10975, P. 1097506. International Society for Optics and PhotonicsEkman, P., An argument for basic emotions (1992) Cognit. Emot., 6 (3-4), pp. 169-200Hongyu, H., Zhou, X., Zhu, Z., Wang, Q., Xiao, H., A driving simulator study of young driver’s behavior under angry emotion (2019) Technical Report, SAE Technical PaperJames, L., Diane, N., (2000) Road Rage and Aggressive Driving: Steering Clear of Highway Warfare, , Prometheus, AmherstKnowles, M., Scott, H., Baglee, D., The effect of driving style on electric vehicle performance, economy and perception (2012) Int. J. Electr. Hybrid Veh., 4 (3), pp. 228-247Lanatà, A., How the autonomic nervous system and driving style change with incremental stressing conditions during simulated driving (2014) IEEE Trans. Intell. Transp. Syst., 16 (3), pp. 1505-1517Lang, P.J., The emotion probe: Studies of motivation and attention (1995) Am. Psychol., 50 (5), p. 372Lang, P.J., Bradley, M.M., Appetitive and defensive motivation: Goal-directed or goal-determined? (2013) Emot. Rev., 5 (3), pp. 230-234Mesken, J., (2006) Determinants and Consequences of drivers’ Emotions. Stichting Weten-Schappelijk Onderzoek Verkeersveiligheid SWOVMesken, J., Hagenzieker, M.P., Rothengatter, T., de Waard, D., Frequency, determinants, and consequences of different drivers’ emotions: An on-the-road study using self-reports,(observed) behaviour, and physiology (2007) Transp. Res. Part F Traffic Psychol. Behav., 10 (6), pp. 458-475Ooi, J.S.K., Ahmad, S.A., Chong, Y.Z., Ali, S.H.M., Ai, G., Wagatsuma, H., Driver emotion recognition framework based on electrodermal activity measurements during simulated driving conditions (2016) 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES)(2018) Global Status Report on Road SafetyPeng, Z., Wang, Y., Chen, Q., The generation and development of road rage incidents caused by aberrant overtaking: An analysis of cases in China (2019) Transp. Res. Part F Traffic Psychol. Behav., 60, pp. 606-619Plutchik, R., A general psychoevolutionary theory of emotion (1980) Theories of Emotion, pp. 3-33. , pp., Elsevier, AmsterdamQu, W., Ge, Y., Jiang, C., Du, F., Zhang, K., The dula dangerous driving index in China: An investigation of reliability and validity (2014) Accid. Anal. Prev., 64, pp. 62-68Reeve, J., (2014) Understanding Motivation and Emotion, , Wiley, ChichesterRodgers, M.M., Pai, V.M., Conroy, R.S., Recent advances in wearable sensors for health monitoring (2015) IEEE Sens. J., 15 (6), pp. 3119-3126Russell, J.A., A circumplex model of affect (1980) J. Pers. Soc. Psychol., 39 (6), p. 1161Sacharin, V., Schlegel, K., Scherer, K.R., (2012) Geneva Emotion Wheel Rating StudyWang, W., Cheng, Q., Li, C., André, D., Jiang, X., A cross-cultural analysis of driving behavior under critical situations: A driving simulator study (2019) Transp. Res. Part F Traffic Psychol. Behav., 62, pp. 483-493Wu, X., Wang, Y., Peng, Z., Chen, Q., A questionnaire survey on road rage and anger-provoking situations in China (2018) Accid. Anal. Prev., 111, pp. 210-221Zhang, T., Chan, A.H., The association between driving anger and driving outcomes: A meta-analysis of evidence from the past twenty years (2016) Accid. Anal. Prev., 90, pp. 50-62http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9167/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9167oai:repositorio.utb.edu.co:20.500.12585/91672023-05-26 08:15:19.388Repositorio Institucional UTBrepositorioutb@utb.edu.co