VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
The power systems with low inertia such as microgrids require advanced control strategies to improve their performance. These type of grids use voltage source converters to interconnect renewable energy sources and storage devices. The converters can present complementary ancillary services such as...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9095
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9095
- Palabra clave:
- Ancillary services
Microgrid
Voltage source converters
Electric energy storage
Electric power system control
Frequency response
Power converters
Renewable energy resources
Virtual storage
Advanced control strategy
Ancillary service
Frequency compensation
Micro grid
Power electronic converters
Real time simulations
Renewable energy source
Voltage source converters
Power control
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_45910b11c454e51b46d3f5fb2646e5a4 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9095 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach |
title |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach |
spellingShingle |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach Ancillary services Microgrid Voltage source converters Electric energy storage Electric power system control Frequency response Power converters Renewable energy resources Virtual storage Advanced control strategy Ancillary service Frequency compensation Micro grid Power electronic converters Real time simulations Renewable energy source Voltage source converters Power control |
title_short |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach |
title_full |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach |
title_fullStr |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach |
title_full_unstemmed |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach |
title_sort |
VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach |
dc.subject.keywords.none.fl_str_mv |
Ancillary services Microgrid Voltage source converters Electric energy storage Electric power system control Frequency response Power converters Renewable energy resources Virtual storage Advanced control strategy Ancillary service Frequency compensation Micro grid Power electronic converters Real time simulations Renewable energy source Voltage source converters Power control |
topic |
Ancillary services Microgrid Voltage source converters Electric energy storage Electric power system control Frequency response Power converters Renewable energy resources Virtual storage Advanced control strategy Ancillary service Frequency compensation Micro grid Power electronic converters Real time simulations Renewable energy source Voltage source converters Power control |
description |
The power systems with low inertia such as microgrids require advanced control strategies to improve their performance. These type of grids use voltage source converters to interconnect renewable energy sources and storage devices. The converters can present complementary ancillary services such as grid frequency response support. This paper uses a passive control strategy for power electronic converters based on direct power control model and presents the strategy to mitigate the fast changes of the dynamic grid frequency response. The real-time simulations validate the application of the method. © 2019 IEEE. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:56Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:56Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Conferencia |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019 |
dc.identifier.isbn.none.fl_str_mv |
9781728136462 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9095 |
dc.identifier.doi.none.fl_str_mv |
10.1109/INTERCON.2019.8853527 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 55189820500 56919564100 57208126635 |
identifier_str_mv |
Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019 9781728136462 10.1109/INTERCON.2019.8853527 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 55189820500 56919564100 57208126635 |
url |
https://hdl.handle.net/20.500.12585/9095 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.conferencedate.none.fl_str_mv |
12 August 2019 through 14 August 2019 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073566539&doi=10.1109%2fINTERCON.2019.8853527&partnerID=40&md5=7c6aa8d03aed6575a0536b9a6343f451 |
institution |
Universidad Tecnológica de Bolívar |
dc.source.event.none.fl_str_mv |
26th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019 |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9095/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021598088265728 |
spelling |
2020-03-26T16:32:56Z2020-03-26T16:32:56Z2019Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 20199781728136462https://hdl.handle.net/20.500.12585/909510.1109/INTERCON.2019.8853527Universidad Tecnológica de BolívarRepositorio UTB57191493648551898205005691956410057208126635The power systems with low inertia such as microgrids require advanced control strategies to improve their performance. These type of grids use voltage source converters to interconnect renewable energy sources and storage devices. The converters can present complementary ancillary services such as grid frequency response support. This paper uses a passive control strategy for power electronic converters based on direct power control model and presents the strategy to mitigate the fast changes of the dynamic grid frequency response. The real-time simulations validate the application of the method. © 2019 IEEE.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073566539&doi=10.1109%2fINTERCON.2019.8853527&partnerID=40&md5=7c6aa8d03aed6575a0536b9a6343f45126th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019VSC with direct PI power control for frequency compensation in a microgrid: A PBC approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAncillary servicesMicrogridVoltage source convertersElectric energy storageElectric power system controlFrequency responsePower convertersRenewable energy resourcesVirtual storageAdvanced control strategyAncillary serviceFrequency compensationMicro gridPower electronic convertersReal time simulationsRenewable energy sourceVoltage source convertersPower control12 August 2019 through 14 August 2019Gil-González, WalterSanchez S.Montoya O.D.Garrido Arévalo, Víctor ManuelPogaku, N., Prodanovic, M., Green, T.C., Modeling, analysis and testing of autonomous operation of an inverter-based microgrid (2007) IEEE Trans. Power Electron., 22 (2), pp. 613-625. , MarchGuerrero, J.M., Vasquez, J.C., Matas, J., De Vicuna, L.G., Castilla, M., Hierarchical control of droop-controlled ac and dc microgridsa general approach toward standardization (2011) IEEE Trans. Ind. Electron., 58 (1), pp. 158-172. , JanBucher, M.K., Wiget, R., Andersson, G., Franck, C.M., Multiterminal hvdc networkswhat is the preferred topology? (2014) IEEE Trans. Power Del., 29 (1), pp. 406-413. , FebChen, Z., Guerrero, J.M., Blaabjerg, F., A review of the state of the art of power electronics for wind turbines (2009) IEEE Trans. Power Electron., 24 (8), pp. 1859-1875. , AugBlaabjerg, F., Ma, K., Future on power electronics for wind turbine systems (2013) IEEE Trans. Emerg. Sel. Topics Power Electron., 1 (3), pp. 139-152. , SepGao, Q., Preece, R., Improving frequency stability in low inertia power systems using synthetic inertia from wind turbines (2017) 2017 IEEE Manchester PowerTech, pp. 1-6. , JuneGui, Y., Kim, C., Chung, C.C., Guerrero, J.M., Guan, Y., Vasquez, J.C., Improved direct power control for grid-connected voltage source converters (2018) IEEE Trans. Ind. Electron., 65 (10), pp. 8041-8051. , OctHernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G., Adaptive PI stabilization of switched power converters (2010) IEEE Trans. Control Syst. Technol., 18 (3), pp. 688-698Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Zonetti, D., Ortega, R., Benchaib, A., A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems (2014) Control Conference (ECC), pp. 1397-1403. , 2014 European. IEEELiu, S., Zhang, Y., Li, L., Hu, J., Zhou, Y., Zhao, W., Xu, R., 220GHz band-pass filter based on circular resonance cavities with low loss (2015) Microwave Conference (EuMC), pp. 1077-1079. , 2015 European. IEEEhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9095/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9095oai:repositorio.utb.edu.co:20.500.12585/90952023-05-26 10:24:00.132Repositorio Institucional UTBrepositorioutb@utb.edu.co |