VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach

The power systems with low inertia such as microgrids require advanced control strategies to improve their performance. These type of grids use voltage source converters to interconnect renewable energy sources and storage devices. The converters can present complementary ancillary services such as...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9095
Acceso en línea:
https://hdl.handle.net/20.500.12585/9095
Palabra clave:
Ancillary services
Microgrid
Voltage source converters
Electric energy storage
Electric power system control
Frequency response
Power converters
Renewable energy resources
Virtual storage
Advanced control strategy
Ancillary service
Frequency compensation
Micro grid
Power electronic converters
Real time simulations
Renewable energy source
Voltage source converters
Power control
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_45910b11c454e51b46d3f5fb2646e5a4
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9095
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
title VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
spellingShingle VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
Ancillary services
Microgrid
Voltage source converters
Electric energy storage
Electric power system control
Frequency response
Power converters
Renewable energy resources
Virtual storage
Advanced control strategy
Ancillary service
Frequency compensation
Micro grid
Power electronic converters
Real time simulations
Renewable energy source
Voltage source converters
Power control
title_short VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
title_full VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
title_fullStr VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
title_full_unstemmed VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
title_sort VSC with direct PI power control for frequency compensation in a microgrid: A PBC approach
dc.subject.keywords.none.fl_str_mv Ancillary services
Microgrid
Voltage source converters
Electric energy storage
Electric power system control
Frequency response
Power converters
Renewable energy resources
Virtual storage
Advanced control strategy
Ancillary service
Frequency compensation
Micro grid
Power electronic converters
Real time simulations
Renewable energy source
Voltage source converters
Power control
topic Ancillary services
Microgrid
Voltage source converters
Electric energy storage
Electric power system control
Frequency response
Power converters
Renewable energy resources
Virtual storage
Advanced control strategy
Ancillary service
Frequency compensation
Micro grid
Power electronic converters
Real time simulations
Renewable energy source
Voltage source converters
Power control
description The power systems with low inertia such as microgrids require advanced control strategies to improve their performance. These type of grids use voltage source converters to interconnect renewable energy sources and storage devices. The converters can present complementary ancillary services such as grid frequency response support. This paper uses a passive control strategy for power electronic converters based on direct power control model and presents the strategy to mitigate the fast changes of the dynamic grid frequency response. The real-time simulations validate the application of the method. © 2019 IEEE.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:56Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:56Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019
dc.identifier.isbn.none.fl_str_mv 9781728136462
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9095
dc.identifier.doi.none.fl_str_mv 10.1109/INTERCON.2019.8853527
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57191493648
55189820500
56919564100
57208126635
identifier_str_mv Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019
9781728136462
10.1109/INTERCON.2019.8853527
Universidad Tecnológica de Bolívar
Repositorio UTB
57191493648
55189820500
56919564100
57208126635
url https://hdl.handle.net/20.500.12585/9095
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 12 August 2019 through 14 August 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073566539&doi=10.1109%2fINTERCON.2019.8853527&partnerID=40&md5=7c6aa8d03aed6575a0536b9a6343f451
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 26th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9095/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021598088265728
spelling 2020-03-26T16:32:56Z2020-03-26T16:32:56Z2019Proceedings of the 2019 IEEE 26th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 20199781728136462https://hdl.handle.net/20.500.12585/909510.1109/INTERCON.2019.8853527Universidad Tecnológica de BolívarRepositorio UTB57191493648551898205005691956410057208126635The power systems with low inertia such as microgrids require advanced control strategies to improve their performance. These type of grids use voltage source converters to interconnect renewable energy sources and storage devices. The converters can present complementary ancillary services such as grid frequency response support. This paper uses a passive control strategy for power electronic converters based on direct power control model and presents the strategy to mitigate the fast changes of the dynamic grid frequency response. The real-time simulations validate the application of the method. © 2019 IEEE.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073566539&doi=10.1109%2fINTERCON.2019.8853527&partnerID=40&md5=7c6aa8d03aed6575a0536b9a6343f45126th IEEE International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2019VSC with direct PI power control for frequency compensation in a microgrid: A PBC approachinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fAncillary servicesMicrogridVoltage source convertersElectric energy storageElectric power system controlFrequency responsePower convertersRenewable energy resourcesVirtual storageAdvanced control strategyAncillary serviceFrequency compensationMicro gridPower electronic convertersReal time simulationsRenewable energy sourceVoltage source convertersPower control12 August 2019 through 14 August 2019Gil-González, WalterSanchez S.Montoya O.D.Garrido Arévalo, Víctor ManuelPogaku, N., Prodanovic, M., Green, T.C., Modeling, analysis and testing of autonomous operation of an inverter-based microgrid (2007) IEEE Trans. Power Electron., 22 (2), pp. 613-625. , MarchGuerrero, J.M., Vasquez, J.C., Matas, J., De Vicuna, L.G., Castilla, M., Hierarchical control of droop-controlled ac and dc microgridsa general approach toward standardization (2011) IEEE Trans. Ind. Electron., 58 (1), pp. 158-172. , JanBucher, M.K., Wiget, R., Andersson, G., Franck, C.M., Multiterminal hvdc networkswhat is the preferred topology? (2014) IEEE Trans. Power Del., 29 (1), pp. 406-413. , FebChen, Z., Guerrero, J.M., Blaabjerg, F., A review of the state of the art of power electronics for wind turbines (2009) IEEE Trans. Power Electron., 24 (8), pp. 1859-1875. , AugBlaabjerg, F., Ma, K., Future on power electronics for wind turbine systems (2013) IEEE Trans. Emerg. Sel. Topics Power Electron., 1 (3), pp. 139-152. , SepGao, Q., Preece, R., Improving frequency stability in low inertia power systems using synthetic inertia from wind turbines (2017) 2017 IEEE Manchester PowerTech, pp. 1-6. , JuneGui, Y., Kim, C., Chung, C.C., Guerrero, J.M., Guan, Y., Vasquez, J.C., Improved direct power control for grid-connected voltage source converters (2018) IEEE Trans. Ind. Electron., 65 (10), pp. 8041-8051. , OctHernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G., Adaptive PI stabilization of switched power converters (2010) IEEE Trans. Control Syst. Technol., 18 (3), pp. 688-698Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters (2015) Control Eng. Pract., 43, pp. 109-119Zonetti, D., Ortega, R., Benchaib, A., A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems (2014) Control Conference (ECC), pp. 1397-1403. , 2014 European. IEEELiu, S., Zhang, Y., Li, L., Hu, J., Zhou, Y., Zhao, W., Xu, R., 220GHz band-pass filter based on circular resonance cavities with low loss (2015) Microwave Conference (EuMC), pp. 1077-1079. , 2015 European. IEEEhttp://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9095/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9095oai:repositorio.utb.edu.co:20.500.12585/90952023-05-26 10:24:00.132Repositorio Institucional UTBrepositorioutb@utb.edu.co