Stationary-state analysis of low-voltage DC grids
The optimal power flow is a classic method for alternating current networks, which can also be applied to direct current networks. However, it is needed to design new methods that guarantee convergence and global optimum. Several approximations based on Taylor series expansion linearization, recursi...
- Autores:
-
Montoya, Oscar Danilo
Gil-González, Walter
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12116
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12116
- Palabra clave:
- Linear successive approximations
Newton-Raphson formulation
Optimal power flow in direct current networks
Second-order cone programming model
Semidefinite programming model
Taylor-based methods
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_45629e30079bb8d540cd6f11448bf676 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12116 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Stationary-state analysis of low-voltage DC grids |
title |
Stationary-state analysis of low-voltage DC grids |
spellingShingle |
Stationary-state analysis of low-voltage DC grids Linear successive approximations Newton-Raphson formulation Optimal power flow in direct current networks Second-order cone programming model Semidefinite programming model Taylor-based methods |
title_short |
Stationary-state analysis of low-voltage DC grids |
title_full |
Stationary-state analysis of low-voltage DC grids |
title_fullStr |
Stationary-state analysis of low-voltage DC grids |
title_full_unstemmed |
Stationary-state analysis of low-voltage DC grids |
title_sort |
Stationary-state analysis of low-voltage DC grids |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter |
dc.subject.keywords.spa.fl_str_mv |
Linear successive approximations Newton-Raphson formulation Optimal power flow in direct current networks Second-order cone programming model Semidefinite programming model Taylor-based methods |
topic |
Linear successive approximations Newton-Raphson formulation Optimal power flow in direct current networks Second-order cone programming model Semidefinite programming model Taylor-based methods |
description |
The optimal power flow is a classic method for alternating current networks, which can also be applied to direct current networks. However, it is needed to design new methods that guarantee convergence and global optimum. Several approximations based on Taylor series expansion linearization, recursive approximations, and convex optimization can be developed. In this chapter, we theoretically and numerically analyze approximations such as successive linear approximations, Newton-Raphson approximation, hyperbolic approximation, semidefinite programming, and second-order cone optimization for solving optimal power flow problems in direct current networks. The emphasis of the chapter is on low-voltage direct current grids (i.e., DC microgrids and DC distribution), but the ideas can be easily extended to high-power applications. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-01-01 |
dc.date.accessioned.none.fl_str_mv |
2023-07-18T19:20:21Z |
dc.date.available.none.fl_str_mv |
2023-07-18T19:20:21Z |
dc.date.submitted.none.fl_str_mv |
2023-07 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O.D., Gil-González, W. Stationary-state analysis of low-voltage DC grids (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 195-213. DOI: 10.1016/B978-0-12-822101-3.00013-7 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12116 |
dc.identifier.doi.none.fl_str_mv |
10.1016/B978-0-12-822101-3.00013-7 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O.D., Gil-González, W. Stationary-state analysis of low-voltage DC grids (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 195-213. DOI: 10.1016/B978-0-12-822101-3.00013-7 10.1016/B978-0-12-822101-3.00013-7 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12116 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
18 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/1/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/4/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/5/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.jpg |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 55a45e77aaad622dd2b21a6f1fbc32c6 52e1336adb5720fcc8d052f27e7c6a52 1e7785eb72ad6ccc1783b4465ad5bec4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021612296470528 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter327d969f-24fd-44c9-9d9b-14591e6c7d382023-07-18T19:20:21Z2023-07-18T19:20:21Z2021-01-012023-07Montoya, O.D., Gil-González, W. Stationary-state analysis of low-voltage DC grids (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 195-213. DOI: 10.1016/B978-0-12-822101-3.00013-7https://hdl.handle.net/20.500.12585/1211610.1016/B978-0-12-822101-3.00013-7Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe optimal power flow is a classic method for alternating current networks, which can also be applied to direct current networks. However, it is needed to design new methods that guarantee convergence and global optimum. Several approximations based on Taylor series expansion linearization, recursive approximations, and convex optimization can be developed. In this chapter, we theoretically and numerically analyze approximations such as successive linear approximations, Newton-Raphson approximation, hyperbolic approximation, semidefinite programming, and second-order cone optimization for solving optimal power flow problems in direct current networks. The emphasis of the chapter is on low-voltage direct current grids (i.e., DC microgrids and DC distribution), but the ideas can be easily extended to high-power applications.18 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC MicrogridsStationary-state analysis of low-voltage DC gridsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Linear successive approximationsNewton-Raphson formulationOptimal power flow in direct current networksSecond-order cone programming modelSemidefinite programming modelTaylor-based methodsCartagena de IndiasParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S. State of the art in research on microgrids: A review (2015) IEEE Access, 3, art. no. 07120901, pp. 890-925. Cited 759 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2015.2443119Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Montoya Giraldo, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (12), art. no. 8620316, pp. 2032-2036. Cited 28 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2894149Jin, C., Wang, P., Xiao, J., Tang, Y., Choo, F.H. Implementation of hierarchical control in DC microgrids (2014) IEEE Transactions on Industrial Electronics, 61 (8), art. no. 6642055, pp. 4032-4042. Cited 295 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2013.2286563Rouzbehi, K., Candela, J.I., Gharehpetian, G.B., Harnefors, L., Luna, A., Rodriguez, P. Multiterminal DC grids: Operating analogies to AC power systems (2017) Renewable and Sustainable Energy Reviews, 70, pp. 886-895. Cited 45 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.11.270Stott, B., Jardim, J., Alsaç, O. DC power flow revisited (2009) IEEE Transactions on Power Systems, 24 (3), pp. 1290-1300. Cited 733 times. doi: 10.1109/TPWRS.2009.2021235Montoya, O.D., Gil-González, W., Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids (Open Access) (2019) Electric Power Systems Research, 169, pp. 18-23. Cited 39 times. doi: 10.1016/j.epsr.2018.12.008Garcés, A., Montoya, O.-D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms (2019) Journal of Control, Automation and Electrical Systems, 30 (5), pp. 794-801. Cited 16 times. http://rd.springer.com/journal/40313 doi: 10.1007/s40313-019-00489-4Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems (2016) IEEE Transactions on Power Systems, 31 (1), art. no. 7027253, pp. 827-828. Cited 213 times. doi: 10.1109/TPWRS.2015.2394296Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (Open Access) (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640Montoya, O.D., Gil-Gonzalez, W., Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (6), art. no. 8469013, pp. 1018-1022. Cited 48 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2018.2871432Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (2019) Engineering Science and Technology, an International Journal. Cited 2 times.Luo, Z.-Q., Ma, W.-K., So, A., Ye, Y., Zhang, S. Semidefinite relaxation of quadratic optimization problems (Open Access) (2010) IEEE Signal Processing Magazine, 27 (3), art. no. 5447068, pp. 20-34. Cited 2311 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79&year=2008 doi: 10.1109/MSP.2010.936019Garcés, A. Convex optimization for the optimal power flow on DC distribution systems (2020) Handbook of Optimization in Electric Power Distribution Systems, pp. 121-137. Cited 7 times. SpringerGrant, M., Boyd, S. (2014) CVX: Matlab software for disciplined convex programming, version 2.1. Cited 8324 times. http://cvxr.com/cvxGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (Open Access) (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025Hindi, H. A tutorial on convex optimization (2004) Proceedings of the American Control Conference, 4, pp. 3252-3265. Cited 60 times. doi: 10.23919/acc.2004.1384411Alizadeh, F., Goldfarb, D. Second-order cone programming (Open Access) (2003) Mathematical Programming, Series B, 95 (1), pp. 3-51. Cited 1091 times. doi: 10.1007/s10107-002-0339-5http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALStationary-state analysis of low-voltage DC grids.pdfStationary-state analysis of low-voltage DC grids.pdfapplication/pdf129070https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/1/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf55a45e77aaad622dd2b21a6f1fbc32c6MD51TEXTStationary-state analysis of low-voltage DC grids.pdf.txtStationary-state analysis of low-voltage DC grids.pdf.txtExtracted texttext/plain5139https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/4/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.txt52e1336adb5720fcc8d052f27e7c6a52MD54THUMBNAILStationary-state analysis of low-voltage DC grids.pdf.jpgStationary-state analysis of low-voltage DC grids.pdf.jpgGenerated Thumbnailimage/jpeg8152https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/5/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.jpg1e7785eb72ad6ccc1783b4465ad5bec4MD5520.500.12585/12116oai:repositorio.utb.edu.co:20.500.12585/121162023-07-19 00:19:14.514Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |