Stationary-state analysis of low-voltage DC grids

The optimal power flow is a classic method for alternating current networks, which can also be applied to direct current networks. However, it is needed to design new methods that guarantee convergence and global optimum. Several approximations based on Taylor series expansion linearization, recursi...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12116
Acceso en línea:
https://hdl.handle.net/20.500.12585/12116
Palabra clave:
Linear successive approximations
Newton-Raphson formulation
Optimal power flow in direct current networks
Second-order cone programming model
Semidefinite programming model
Taylor-based methods
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_45629e30079bb8d540cd6f11448bf676
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12116
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Stationary-state analysis of low-voltage DC grids
title Stationary-state analysis of low-voltage DC grids
spellingShingle Stationary-state analysis of low-voltage DC grids
Linear successive approximations
Newton-Raphson formulation
Optimal power flow in direct current networks
Second-order cone programming model
Semidefinite programming model
Taylor-based methods
title_short Stationary-state analysis of low-voltage DC grids
title_full Stationary-state analysis of low-voltage DC grids
title_fullStr Stationary-state analysis of low-voltage DC grids
title_full_unstemmed Stationary-state analysis of low-voltage DC grids
title_sort Stationary-state analysis of low-voltage DC grids
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
dc.subject.keywords.spa.fl_str_mv Linear successive approximations
Newton-Raphson formulation
Optimal power flow in direct current networks
Second-order cone programming model
Semidefinite programming model
Taylor-based methods
topic Linear successive approximations
Newton-Raphson formulation
Optimal power flow in direct current networks
Second-order cone programming model
Semidefinite programming model
Taylor-based methods
description The optimal power flow is a classic method for alternating current networks, which can also be applied to direct current networks. However, it is needed to design new methods that guarantee convergence and global optimum. Several approximations based on Taylor series expansion linearization, recursive approximations, and convex optimization can be developed. In this chapter, we theoretically and numerically analyze approximations such as successive linear approximations, Newton-Raphson approximation, hyperbolic approximation, semidefinite programming, and second-order cone optimization for solving optimal power flow problems in direct current networks. The emphasis of the chapter is on low-voltage direct current grids (i.e., DC microgrids and DC distribution), but the ideas can be easily extended to high-power applications.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-01-01
dc.date.accessioned.none.fl_str_mv 2023-07-18T19:20:21Z
dc.date.available.none.fl_str_mv 2023-07-18T19:20:21Z
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Montoya, O.D., Gil-González, W. Stationary-state analysis of low-voltage DC grids (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 195-213. DOI: 10.1016/B978-0-12-822101-3.00013-7
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12116
dc.identifier.doi.none.fl_str_mv 10.1016/B978-0-12-822101-3.00013-7
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D., Gil-González, W. Stationary-state analysis of low-voltage DC grids (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 195-213. DOI: 10.1016/B978-0-12-822101-3.00013-7
10.1016/B978-0-12-822101-3.00013-7
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12116
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 18 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/1/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/4/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/5/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
55a45e77aaad622dd2b21a6f1fbc32c6
52e1336adb5720fcc8d052f27e7c6a52
1e7785eb72ad6ccc1783b4465ad5bec4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021612296470528
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter327d969f-24fd-44c9-9d9b-14591e6c7d382023-07-18T19:20:21Z2023-07-18T19:20:21Z2021-01-012023-07Montoya, O.D., Gil-González, W. Stationary-state analysis of low-voltage DC grids (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 195-213. DOI: 10.1016/B978-0-12-822101-3.00013-7https://hdl.handle.net/20.500.12585/1211610.1016/B978-0-12-822101-3.00013-7Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe optimal power flow is a classic method for alternating current networks, which can also be applied to direct current networks. However, it is needed to design new methods that guarantee convergence and global optimum. Several approximations based on Taylor series expansion linearization, recursive approximations, and convex optimization can be developed. In this chapter, we theoretically and numerically analyze approximations such as successive linear approximations, Newton-Raphson approximation, hyperbolic approximation, semidefinite programming, and second-order cone optimization for solving optimal power flow problems in direct current networks. The emphasis of the chapter is on low-voltage direct current grids (i.e., DC microgrids and DC distribution), but the ideas can be easily extended to high-power applications.18 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC MicrogridsStationary-state analysis of low-voltage DC gridsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Linear successive approximationsNewton-Raphson formulationOptimal power flow in direct current networksSecond-order cone programming modelSemidefinite programming modelTaylor-based methodsCartagena de IndiasParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S. State of the art in research on microgrids: A review (2015) IEEE Access, 3, art. no. 07120901, pp. 890-925. Cited 759 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2015.2443119Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Montoya Giraldo, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (12), art. no. 8620316, pp. 2032-2036. Cited 28 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2894149Jin, C., Wang, P., Xiao, J., Tang, Y., Choo, F.H. Implementation of hierarchical control in DC microgrids (2014) IEEE Transactions on Industrial Electronics, 61 (8), art. no. 6642055, pp. 4032-4042. Cited 295 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=5410131 doi: 10.1109/TIE.2013.2286563Rouzbehi, K., Candela, J.I., Gharehpetian, G.B., Harnefors, L., Luna, A., Rodriguez, P. Multiterminal DC grids: Operating analogies to AC power systems (2017) Renewable and Sustainable Energy Reviews, 70, pp. 886-895. Cited 45 times. https://www.journals.elsevier.com/renewable-and-sustainable-energy-reviews doi: 10.1016/j.rser.2016.11.270Stott, B., Jardim, J., Alsaç, O. DC power flow revisited (2009) IEEE Transactions on Power Systems, 24 (3), pp. 1290-1300. Cited 733 times. doi: 10.1109/TPWRS.2009.2021235Montoya, O.D., Gil-González, W., Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids (Open Access) (2019) Electric Power Systems Research, 169, pp. 18-23. Cited 39 times. doi: 10.1016/j.epsr.2018.12.008Garcés, A., Montoya, O.-D. A Potential Function for the Power Flow in DC Microgrids: An Analysis of the Uniqueness and Existence of the Solution and Convergence of the Algorithms (2019) Journal of Control, Automation and Electrical Systems, 30 (5), pp. 794-801. Cited 16 times. http://rd.springer.com/journal/40313 doi: 10.1007/s40313-019-00489-4Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems (2016) IEEE Transactions on Power Systems, 31 (1), art. no. 7027253, pp. 827-828. Cited 213 times. doi: 10.1109/TPWRS.2015.2394296Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (Open Access) (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640Montoya, O.D., Gil-Gonzalez, W., Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (6), art. no. 8469013, pp. 1018-1022. Cited 48 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2018.2871432Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (2019) Engineering Science and Technology, an International Journal. Cited 2 times.Luo, Z.-Q., Ma, W.-K., So, A., Ye, Y., Zhang, S. Semidefinite relaxation of quadratic optimization problems (Open Access) (2010) IEEE Signal Processing Magazine, 27 (3), art. no. 5447068, pp. 20-34. Cited 2311 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79&year=2008 doi: 10.1109/MSP.2010.936019Garcés, A. Convex optimization for the optimal power flow on DC distribution systems (2020) Handbook of Optimization in Electric Power Distribution Systems, pp. 121-137. Cited 7 times. SpringerGrant, M., Boyd, S. (2014) CVX: Matlab software for disciplined convex programming, version 2.1. Cited 8324 times. http://cvxr.com/cvxGil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (Open Access) (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025Hindi, H. A tutorial on convex optimization (2004) Proceedings of the American Control Conference, 4, pp. 3252-3265. Cited 60 times. doi: 10.23919/acc.2004.1384411Alizadeh, F., Goldfarb, D. Second-order cone programming (Open Access) (2003) Mathematical Programming, Series B, 95 (1), pp. 3-51. Cited 1091 times. doi: 10.1007/s10107-002-0339-5http://purl.org/coar/resource_type/c_2df8fbb1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINALStationary-state analysis of low-voltage DC grids.pdfStationary-state analysis of low-voltage DC grids.pdfapplication/pdf129070https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/1/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf55a45e77aaad622dd2b21a6f1fbc32c6MD51TEXTStationary-state analysis of low-voltage DC grids.pdf.txtStationary-state analysis of low-voltage DC grids.pdf.txtExtracted texttext/plain5139https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/4/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.txt52e1336adb5720fcc8d052f27e7c6a52MD54THUMBNAILStationary-state analysis of low-voltage DC grids.pdf.jpgStationary-state analysis of low-voltage DC grids.pdf.jpgGenerated Thumbnailimage/jpeg8152https://repositorio.utb.edu.co/bitstream/20.500.12585/12116/5/Stationary-state%20analysis%20of%20low-voltage%20DC%20grids.pdf.jpg1e7785eb72ad6ccc1783b4465ad5bec4MD5520.500.12585/12116oai:repositorio.utb.edu.co:20.500.12585/121162023-07-19 00:19:14.514Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=