Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management

Organic phosphoester (OPE) antioxidants are currently required due to their contribution to enhancing the quality of polymers, including polypropylene (PP). In this research, an integral methodology is presented for the efficient extraction of bis(2,4-dicumylphenyl) pentaerythritol diphosphite from...

Full description

Autores:
Hernandez Fernandez, Joaquin
Bello-Leon, Elias
Carrascal, Juan
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12709
Acceso en línea:
https://hdl.handle.net/20.500.12585/12709
Palabra clave:
Extraction
Organic
Antioxidants phenolics phosphoesters
Polypropylene
Industrial
Wastewater
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_42fd85f29f89a370261f7bc4111882bf
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12709
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
title Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
spellingShingle Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
Extraction
Organic
Antioxidants phenolics phosphoesters
Polypropylene
Industrial
Wastewater
LEMB
title_short Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
title_full Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
title_fullStr Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
title_full_unstemmed Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
title_sort Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
dc.creator.fl_str_mv Hernandez Fernandez, Joaquin
Bello-Leon, Elias
Carrascal, Juan
dc.contributor.author.none.fl_str_mv Hernandez Fernandez, Joaquin
Bello-Leon, Elias
Carrascal, Juan
dc.subject.keywords.spa.fl_str_mv Extraction
Organic
Antioxidants phenolics phosphoesters
Polypropylene
Industrial
Wastewater
topic Extraction
Organic
Antioxidants phenolics phosphoesters
Polypropylene
Industrial
Wastewater
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Organic phosphoester (OPE) antioxidants are currently required due to their contribution to enhancing the quality of polymers, including polypropylene (PP). In this research, an integral methodology is presented for the efficient extraction of bis(2,4-dicumylphenyl) pentaerythritol diphosphite from industrial wastewater. Upon employing the solid-phase extraction (SPE) technique, the recovered compound is subjected to a comprehensive analysis of the recovered compound using high-performance liquid chromatography (HPLC), mass spectrometry (MS), thermal analysis (TGA), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Subsequently, purified Bis(2,4-dicumylphenyl) pentaerythritol diphosphite was evaluated as a thermooxidative stabilizer after incorporation into PP resins. The relative standard deviation (RSD), Error (Er), linearity (R2), and percentage (%) recovery were less than 2.6, 2.5, more significant than 0.9995, and greater than 96%, respectively, for the inter-day and intra-day tests of the chromatographic method and the SPE. Except for chloroform, which was necessary due to the solubility properties of the investigated analyte, the use of environmentally friendly solvents, such as methanol and acetonitrile, was considered during the development of this research. The OPE extracted from industrial wastewater was characterized by FTIR, UV–Vis, DSC, TGA, and MS, allowing the elucidation of the structure of Bis(2,4-dicumylphenyl) pentaerythritol diphosphite (BDPD). The recovered OPE was mixed with PP resins, allowing it to improve its thermal properties and minimize its thermo-oxidative degradation. Organophosphorus flame retardant (OPE)’ concentration in wastewater is alarming, ranging from 1179.0 to 4709.6 mg L−1. These exceed toxicity thresholds for aquatic organisms, emphasizing global environmental risks. Using a validated solid-phase extraction (SPE) technique with over 94% recovery, the study addresses concerns by removing organic contaminants and supporting circular economy principles. The high economic and environmental significance of recovering BDPD underscores the need for urgent global attention and intervention.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-14T12:15:59Z
dc.date.available.none.fl_str_mv 2024-08-14T12:15:59Z
dc.date.issued.none.fl_str_mv 2024-06-11
dc.date.submitted.none.fl_str_mv 2024-08-13
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Hernández-Fernández, J.; Bello-Leon, E.; Carrascal, J. Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management. Molecules 2024, 29, 2780. https:// doi.org/10.3390/molecules29122780
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12709
dc.identifier.doi.none.fl_str_mv 10.3390/molecules29122780
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Hernández-Fernández, J.; Bello-Leon, E.; Carrascal, J. Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management. Molecules 2024, 29, 2780. https:// doi.org/10.3390/molecules29122780
10.3390/molecules29122780
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12709
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 20 paginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Molecules
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/1/molecules-29-02780%20%283%29.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/4/molecules-29-02780%20%283%29.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/5/molecules-29-02780%20%283%29.pdf.jpg
bitstream.checksum.fl_str_mv 80748fc83e5ff8f9a282e0fc2d5bb2fb
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
306660ccbf5ef151a1bfe227efd97db9
a08156e97fdfaef30dc4319f20f0384d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021784714870784
spelling Hernandez Fernandez, Joaquine572e424-8c7f-4b36-ade7-2c94d29e3c79Bello-Leon, Elias578b51e9-b1de-4b43-b433-5a855bfa1954Carrascal, Juanfbd9ee70-9362-44f6-8f09-537f72f97c822024-08-14T12:15:59Z2024-08-14T12:15:59Z2024-06-112024-08-13Hernández-Fernández, J.; Bello-Leon, E.; Carrascal, J. Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management. Molecules 2024, 29, 2780. https:// doi.org/10.3390/molecules29122780https://hdl.handle.net/20.500.12585/1270910.3390/molecules29122780Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarOrganic phosphoester (OPE) antioxidants are currently required due to their contribution to enhancing the quality of polymers, including polypropylene (PP). In this research, an integral methodology is presented for the efficient extraction of bis(2,4-dicumylphenyl) pentaerythritol diphosphite from industrial wastewater. Upon employing the solid-phase extraction (SPE) technique, the recovered compound is subjected to a comprehensive analysis of the recovered compound using high-performance liquid chromatography (HPLC), mass spectrometry (MS), thermal analysis (TGA), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Subsequently, purified Bis(2,4-dicumylphenyl) pentaerythritol diphosphite was evaluated as a thermooxidative stabilizer after incorporation into PP resins. The relative standard deviation (RSD), Error (Er), linearity (R2), and percentage (%) recovery were less than 2.6, 2.5, more significant than 0.9995, and greater than 96%, respectively, for the inter-day and intra-day tests of the chromatographic method and the SPE. Except for chloroform, which was necessary due to the solubility properties of the investigated analyte, the use of environmentally friendly solvents, such as methanol and acetonitrile, was considered during the development of this research. The OPE extracted from industrial wastewater was characterized by FTIR, UV–Vis, DSC, TGA, and MS, allowing the elucidation of the structure of Bis(2,4-dicumylphenyl) pentaerythritol diphosphite (BDPD). The recovered OPE was mixed with PP resins, allowing it to improve its thermal properties and minimize its thermo-oxidative degradation. Organophosphorus flame retardant (OPE)’ concentration in wastewater is alarming, ranging from 1179.0 to 4709.6 mg L−1. These exceed toxicity thresholds for aquatic organisms, emphasizing global environmental risks. Using a validated solid-phase extraction (SPE) technique with over 94% recovery, the study addresses concerns by removing organic contaminants and supporting circular economy principles. The high economic and environmental significance of recovering BDPD underscores the need for urgent global attention and intervention.20 paginasapplication/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2MoleculesRecovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Managementinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85ExtractionOrganicAntioxidants phenolics phosphoestersPolypropyleneIndustrialWastewaterLEMBCartagena de IndiasCampus TecnológicoInvestigadoresVila-Costa, M.; Martinez-Varela, A.; Rivas, D.; Martinez, P.; Pérez-López, C.; Zonja, B.; Montemurro, N.; Tauler, R.; Barceló, D.; Ginebreda, A. Advanced analytical, chemometric, and genomic tools to identify polymer degradation products and potential microbial consumers in wastewater environments. Chem. Eng. J. 2022, 442, 136175.Ardusso, M.; Forero-López, A.; Buzzi, N.; Spetter, C.; Severini, F. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci. Total Environ. 2021, 763, 144365Plastics–The Facts 2018; PlasticsEurope: Brussels, Belgium, 2018.Zhao, X.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A.J.; Ozcan, S. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 2022, 428, 131928Plastics Europe. Market data Archives. Available online: https://plasticseurope.org/resources/market-data/ (accessed on 21 February 2023).Carney Almroth, B.; Eggert, H. Marine Plastic Pollution: Sources, Impacts, and Policy Issues. Rev. Environ. Econ. Policy 2019, 13, 317–326.Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913Thushari, G.G.N.; Senevirathna, J.D.M. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709.Gensler, R.; Plummer, C.J.G.; Kausch, H.H.; Kramer, E.; Pauquet, J.R.; Zweifel, H. Thermo-oxidative degradation of isotactic polypropylene at high temperatures: Phenolic antioxidants versus HAS. Polym. Degrad. Stab. 2000, 67, 195Wang, H.; Zhang, J.; Fu, H.;Wang,W.;Wang, Q. Effect of an antioxidant on the life cycle of wood flour/polypropylene composites. J. For. Res. 2019, 31, 1435–1443Abbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H. The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J. Anal. Appl. Pyrolysis 2012, 95, 198–204Abbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H. Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor. Fuel Process. Technol. 2012, 109, 90–95Sakata, Y.; Uddin, M.A.; Muto, A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. J. Anal. Appl. Pyrolysis 1999, 51, 135–155.Chien, J.; Boss, C. Polymer reactions. V. Kinetics of autoxidation of polypropylene. J. Polym. Sci. Part A Polym. Chem. 1967, 5, 3091–3101Overdahl, K.E.; Sutton, R.; Sun, J.; Destefano, N.J.; Getzinger, G.J.; Ferguson, P.L. Assessment of emerging polar organic pollutants linked to contaminant pathways within an urban estuary using non-targeted analysis. Environ. Sci. Process. Impacts 2021, 23, 429–445.He, Y.; Sang,W.; Lu,W.; Zhang,W.; Zhan, C.; Jia, D. Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. Water 2022, 14, 1351.Núñez-Delgado, A.; Zhang, Z.; Bontempi, E.; Coccia, M.; Race, M.; Zhou, Y. Editorial on the Topic “New Research on Detection and Removal of Emerging Pollutants”. Materials 2023, 16, 725.Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects, and Treatment Processes. Water 2021, 13, 3258Stefanakis, A.I.; Becker, J.A. A review of emerging contaminants in water: Classification, sources, and potential risks. In Impact of Water Pollution on Human Health and Environmental Sustainability; IGI Global: Harrisburg, PA, USA, 2015; pp. 55–80Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219Liu, R.; Song, S.; Lin, Y.; Ruan, T.; Jiang, G. Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. Environ. Sci. Technol. 2015, 49, 2073–2080Liu, R.; Ruan, T.; Song, S.; Lin, Y.; Jiang, G. Determination of synthetic phenolic antioxidants and relative metabolites in the sewage treatment plant and recipient river by high-performance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2015, 1381, 13–21Shin, C.; Kim, D.G.; Kim, J.H.; Kim, J.H.; Song, M.K.; Oh, K.S. Migration of substances from food contact plastic materials into foodstuff and their implications for human exposure. Food Chem. Toxicol. 2021, 154, 112373O’Brien, A.P. Pira International-Report for the Food Standards Agency 07A11J0587 Investigation into the Effect of Additives on Migration of Substances Originating from Colorants Used in Food Contact Plastics A03066 Final Report; Food Standards Agency: London, UK, 2010.Liu, B.; Rocca, D.; Yan, H.; Pan, D. Beyond Conformational Control: Effects of Noncovalent Interactions on Molecular Electronic Properties of Conjugated Polymers. J. Am. Chem. Soc. 2021, 1, 2182–2187Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719Dương, T.-B.; Dwivedi, R.; Bain, L.J. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol. Appl. Pharmacol. 2023, 461, 116386Chen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22.Xu, Q.; Guan, B.; Guo, W.; Liu, X. Effect of Antioxidants on Thermo-Oxidative Stability and Aging of Bio-Based PA56T and Fast Characterization of Anti-Oxidation Performance. Polymers 2022, 14, 1280Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.Sanchez, I.C.; Chang, S.S.; McCrackin, F.L.; Smith, L.E. An Evaluation of Existing Models Describing the Migration of Additives in Polymers Prepared for Bureau of Foods Food and Drug Administration; MBS Publications: Columbia, MO, USA, 1978Kida, M.; Koszelnik, P. Investigation of the Presence and Possible Migration from Microplastics of Phthalic Acid Esters and Polycyclic Aromatic Hydrocarbons. J. Polym. Environ. 2021, 29, 599–611Hu, W.; Gao, P.; Wang, L.; Hu, J. Endocrine disrupting toxicity of aryl organophosphate esters and mode of action. Crit. Rev. Environ. Sci. Technol. 2022, 53, 1–18.Doherty, B.T.; Hammel, S.C.; Daniels, J.L.; Stapleton, H.M.; Hoffman, K. Organophosphate Esters: Are These Flame Retardants & Plasticizers affecting Children’s Health? Curr. Environ. Health Rep. 2019, 6, 201–213.Hahladakis, J.N.; Velis, C.A.;Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal, and recycling. J. Hazard. Mater. 2018, 344, 179–199Carlsson, D.J.; Krzymien, M.E.; Deschênes, L.; Mercier, M.; Vachon, C. Phosphite additives and their transformation products in polyethylene packaging for γ-irradiation. Food Addit. Contam. 2001, 18, 581–591.Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808Majoni, S.; Chaparadza, A. Thermal degradation kinetic study of polystyrene/organophosphate composite. Thermochim Acta 2018, 662, 8–15.Majoni, S. Thermal and flammability study of polystyrene composites containing magnesium-aluminum layered double hydroxide (MgAl-C16 LDH), and an organophosphate. J. Therm. Anal. Calorim. 2015, 120, 1435–1443Scopus—Document Details—Additives Annual: Additives Producers Invest & Expand. Available online: https://scopus. unicartagenaproxy.elogim.com/record/display.uri?eid=2-s2.0-84858973958&origin=resultslist&sort=plf-f&src=s&sid=c72efb2 30531e5c91db2f8012cc64b5b&sot=b&sdt=b&s=TITLE-ABS-KEY(doverphos)&sl=24&sessionSearchId=c72efb230531e5c91db2f8 012cc64b5b (accessed on 22 February 2023).Chaco, H.; Cano, H.; Hernandez-Fernandez, J.; Guerra, Y.; Puello-Polo, E.; Rios-Rojas, J.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753.Bekele, T.G.; Zhao, H.; Yang, J.; Chegen, R.G.; Chen, J.; Mekonen, S.; Qadeer, A. A review of environmental occurrence, analysis, bioaccumulation, and toxicity of organophosphate esters. Environ. Sci. Pollut. Res. 2021, 28, 49507–49528.Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2022, 56, 2245–2251.Paidi, M.K.; Satapute, P.; Haider, M.S.; Udikeri, S.S.; Ramachandra, Y.L.; Vo, D.-V.N.; Govarthanan, M.; Jogaiah, S. Mitigation of organophosphorus insecticides from the environment: Residual detoxification by bioweapon catalytic scavengers. Environ. Res. 2021, 200, 111368.Bauer, K.N.; Tee, H.T.; Velencoso, M.M.; Wurm, F.R. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73, 61–122Sahin, C.; Karpuzcu, M.E. Mitigation of organophosphate pesticide pollution in agricultural watersheds. Sci. Total Environ. 2020, 710, 136261Hernández-Fernández, J.; Ortega-Toro, R.; López-Martinez, J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2023, 28, 2003Kahraman, G.; Wang, D.Y.; von Irmer, J.; Gallei, M.; Hey-Hawkins, E.; Eren, T. Synthesis and characterization of phosphorus and carborane-containing polyoxanorbornene block copolymers. Polymers 2019, 11, 613Hasan, N.; Busse, K.; Haider, T.; Wurm, F.R.; Kressler, J. Crystallization of poly(Ethylene)s with regular phosphoester defects studied at the air-water interface. Polymers 2020, 12, 2408Steinbach, T.; Schröder, R.; Ritz, S.; Wurm, F.R. Microstructure analysis of biocompatible phosphoester copolymers. Polym. Chem. 2013, 4, 4469–4479Yamakita, Y.; Takeuchi, I.; Makino, K.; Terada, H.; Kikuchi, A.; Troev, K. Thermoresponsive Polyphosphoester via Polycondensation Reactions: Synthesis, Characterization, and Self-Assembly. Molecules 2022, 27, 6006Fernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920Gonçalves-Filho, D.; de Souza, D. Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules 2022, 27, 7137.Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying partsper- billion levels of arsine and phosphine in nitrogen, hydrogen, and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial PolypropyleneWaste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [CrossRef] 57. Rawa-Adkonis, M.;Wolska, L.; Namie´snik, J. Analytical procedures for PAH and PCB determination in water samples—Error sources. Crit. Rev. Anal. Chem. 2006, 36, 63–72.Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413.Banwo, K.; Olojede, A.O.; Adesulu-Dahunsi, A.T.; Verma, D.K.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.R.; Gupta, A.K.; Aguilar, C.N.; et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Biosci. 2021, 43, 101320Papanastasiou, M.; McMahon, A.W.; Allen, N.S.; Doyle, A.M.; Johnson, B.J.; Keck-Antoine, K. The hydrolysis mechanism of bis(2,4-di-tert-butyl)pentaerythritol diphosphite (Alkanox P24): An atmospheric pressure photoionization mass spectrometric study. Polym. Degrad. Stab. 2006, 91, 2675–2682Aoyagi, Y.; Chung, D.D.L. Effects of antioxidants and the solid component on the thermal stability of polyol-ester-based thermal pastes. J. Mater. Sci. 2007, 42, 2358–2375Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835.Jusoh, N.; Rosly, M.B.; Othman, N.; Rahman, H.A.; Noah, N.F.M.; Sulaiman, R.N.R. Selective extraction and recovery of polyphenols from palm oil mill sterilization condensate using emulsion liquid membrane process. Environ. Sci. Pollut. Res. 2020, 27, 23246–23257Stein, D.; Stevenson, D. High-performance phosphite stabilizer. J. Vinyl Addit. Technol. 2000, 6, 129–137Stein, D.; Stevenson, D. Benefits of a High-Performance Phosphite in the Gamma Irradiation of Polyolefins. J. Vinyl Addit. Technol. 2001, 7, 21–23Papanastasiou, M.; McMahon, A.; Allen, N.; Johnson, B.; Keck-Antoine, K.; Santos, L.; Neumann, M. Atmospheric pressure photoionization mass spectrometry as a tool for the investigation of the hydrolysis reaction mechanisms of phosphite antioxidants. Int. J. Mass. Spectrom. 2008, 275, 45–54.Seo, J.S.; Shin, S.Y. A Study on the Physical Properties of Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends with Various Thermal Stabilizers to Secure the Safety of Automobile Passengers. J. Macromol. Sci. Part B Phys. 2021, 60, 402–415Polidar, M.; Metzsch-Zilligen, E.; Pfaendner, R. Controlled and Accelerated Hydrolysis of Polylactide (PLA) through Pentaerythritol Phosphites with Acid Scavengers. Polymers 2022, 14, 4237GHS Classification Summary. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ghs/#_precSupplementaryMaterial (accessed on 1 February 2024).3,9-Bis(2,4-dicumylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane. PubChem. Available online: https://pubchem. ncbi.nlm.nih.gov/compound/164499#datasheet=LCSS&section=GHS-Classification (accessed on 1 February 2024).Radelyuk, I.; Tussupova, K.; Klemeš, J.J.; Persson, K.M. Oil refinery and water pollution in the context of sustainable development: Developing and developed countries. J. Clean. Prod. 2021, 302, 126987Hernandez-Fernandez, J.; Cano, H.; Guerra, Y. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832Aoyagi, Y.; Chung, D.D.L. Antioxidant-based phase-change thermal interface materials with high thermal stability. J. Electron. Mater. 2008, 37, 448–461Ma, J.; Xiao, R.; Li, J.; Yu, J.; Zhang, Y.; Chen, L. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 5462–5469http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALmolecules-29-02780 (3).pdfmolecules-29-02780 (3).pdfapplication/pdf2499169https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/1/molecules-29-02780%20%283%29.pdf80748fc83e5ff8f9a282e0fc2d5bb2fbMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTmolecules-29-02780 (3).pdf.txtmolecules-29-02780 (3).pdf.txtExtracted texttext/plain82246https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/4/molecules-29-02780%20%283%29.pdf.txt306660ccbf5ef151a1bfe227efd97db9MD54THUMBNAILmolecules-29-02780 (3).pdf.jpgmolecules-29-02780 (3).pdf.jpgGenerated Thumbnailimage/jpeg8084https://repositorio.utb.edu.co/bitstream/20.500.12585/12709/5/molecules-29-02780%20%283%29.pdf.jpga08156e97fdfaef30dc4319f20f0384dMD5520.500.12585/12709oai:repositorio.utb.edu.co:20.500.12585/127092024-08-15 00:19:32.06Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=