Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors

Industrial Internet of Things has become a reality in many kind of industries. In this paper, We explore the case of high quantity of raw data generated by a machine. In the aforementioned case is not viable store and process the data in a traditional Internet of Things architecture. For this case,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9170
Acceso en línea:
https://hdl.handle.net/20.500.12585/9170
Palabra clave:
Edge computing
Industrial internet of things
Predictive maintenance
Electric motors
Internet of things
Maintenance
Architecture-based
Internet of things architectures
Machine monitoring
Potential benefits
Predictive maintenance
Proof of concept
Edge computing
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_41948ebb95664834de2c8b1616fcd202
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9170
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
title Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
spellingShingle Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
Edge computing
Industrial internet of things
Predictive maintenance
Electric motors
Internet of things
Maintenance
Architecture-based
Internet of things architectures
Machine monitoring
Potential benefits
Predictive maintenance
Proof of concept
Edge computing
title_short Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
title_full Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
title_fullStr Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
title_full_unstemmed Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
title_sort Use of Edge Computing for Predictive Maintenance of Industrial Electric Motors
dc.contributor.editor.none.fl_str_mv Figueroa-Garcia J.C.
Duarte-Gonzalez M.
Jaramillo-Isaza S.
Orjuela-Canon A.D.
Diaz-Gutierrez Y.
dc.subject.keywords.none.fl_str_mv Edge computing
Industrial internet of things
Predictive maintenance
Electric motors
Internet of things
Maintenance
Architecture-based
Internet of things architectures
Machine monitoring
Potential benefits
Predictive maintenance
Proof of concept
Edge computing
topic Edge computing
Industrial internet of things
Predictive maintenance
Electric motors
Internet of things
Maintenance
Architecture-based
Internet of things architectures
Machine monitoring
Potential benefits
Predictive maintenance
Proof of concept
Edge computing
description Industrial Internet of Things has become a reality in many kind of industries. In this paper, We explore the case of high quantity of raw data generated by a machine. In the aforementioned case is not viable store and process the data in a traditional Internet of Things architecture. For this case, We use an architecture based on edge computing and Industrial Internet of Things concepts and apply them to a case of machine monitoring for predictive maintenance. The proof of concept shows the potential benefits in real industrial applications. © 2019, Springer Nature Switzerland AG.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:33:07Z
dc.date.available.none.fl_str_mv 2020-03-26T16:33:07Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 523-533
dc.identifier.isbn.none.fl_str_mv 9783030310189
dc.identifier.issn.none.fl_str_mv 18650929
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9170
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-030-31019-6_44
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 57212008502
57212005233
55498635300
identifier_str_mv Communications in Computer and Information Science; Vol. 1052, pp. 523-533
9783030310189
18650929
10.1007/978-3-030-31019-6_44
Universidad Tecnológica de Bolívar
Repositorio UTB
57212008502
57212005233
55498635300
url https://hdl.handle.net/20.500.12585/9170
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.conferencedate.none.fl_str_mv 16 October 2019 through 18 October 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075644036&doi=10.1007%2f978-3-030-31019-6_44&partnerID=40&md5=a3ce01c10e2bb04764c4bb875b31115f
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv 6th Workshop on Engineering Applications, WEA 2019
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9170/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021596220751872
spelling Figueroa-Garcia J.C.Duarte-Gonzalez M.Jaramillo-Isaza S.Orjuela-Canon A.D.Diaz-Gutierrez Y.De Leon V.Alcazar Y.Villa Ramírez, José Luis2020-03-26T16:33:07Z2020-03-26T16:33:07Z2019Communications in Computer and Information Science; Vol. 1052, pp. 523-533978303031018918650929https://hdl.handle.net/20.500.12585/917010.1007/978-3-030-31019-6_44Universidad Tecnológica de BolívarRepositorio UTB572120085025721200523355498635300Industrial Internet of Things has become a reality in many kind of industries. In this paper, We explore the case of high quantity of raw data generated by a machine. In the aforementioned case is not viable store and process the data in a traditional Internet of Things architecture. For this case, We use an architecture based on edge computing and Industrial Internet of Things concepts and apply them to a case of machine monitoring for predictive maintenance. The proof of concept shows the potential benefits in real industrial applications. © 2019, Springer Nature Switzerland AG.Department of Science, Information Technology and Innovation, Queensland Government, DSITI Ministry of Information and Communications Technology, Iran Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS), COLCIENCIAS Fondo Nacional de Ciencia Tecnología e Innovación, FONACIT: FP44842-502-2015The authors would like acknowledge the cooperation of all partners within the Centro de Excelencia y Apropiaci?n en Internet de las Cosas (CEA-IoT) project. The authors would also like to thank all the institutions that supported this work: the Colombian Ministry for the Information and Communications Technology (Ministerio de Tecnolog?as de la Informaci?n y las Comunicaciones-MinTIC ) and the Colombian Administrative Department of Science, Technology and Innovation (Departamento Administrativo de Ciencia, Tecnolog?a e Innovaci?n-Colcien-cias) through the Fondo Nacional de Financiamiento para la Ciencia, la Tecnolog?a y la Innovaci?n Francisco Jos? de Caldas (Project ID: FP44842-502-2015).Recurso electrónicoapplication/pdfengSpringerhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85075644036&doi=10.1007%2f978-3-030-31019-6_44&partnerID=40&md5=a3ce01c10e2bb04764c4bb875b31115f6th Workshop on Engineering Applications, WEA 2019Use of Edge Computing for Predictive Maintenance of Industrial Electric Motorsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fEdge computingIndustrial internet of thingsPredictive maintenanceElectric motorsInternet of thingsMaintenanceArchitecture-basedInternet of things architecturesMachine monitoringPotential benefitsPredictive maintenanceProof of conceptEdge computing16 October 2019 through 18 October 2019Gregori, F., Papetti, A., Pandolfi, M., Peruzzini, M., Germani, M., Improving a production site from a social point of view: An IoT infrastructure to monitor workers condition (2018) Procedia CIRP, 72, pp. 886-891. , https://doi.org/10.1016/j.procir.2018.03.057.http://www.sciencedirect.com/science/article/pii/S2212827118301598.ISSN2212-8271(2016) White Paper of Edge Computing ConsortiumBoyes, H., Hallaq, B., Cunningham, J., Watson, T., The industrial Internet of Things (IIoT): An analysis framework (2018) Comput. Ind., 101, pp. 1-12. , http://www.sciencedirect.com/science/article/pii/S0166361517307285.ISSN0166-3615Civerchia, F., Bocchino, S., Salvadori, C., Rossi, E., Maggiani, L., Petracca, M., Industrial Internet of Things monitoring solution for advanced predictive maintenance applications (2017) J. Ind. Inf. Integr., 7, pp. 4-12. , http://www.sciencedirect.com/science/article/pii/S2452414X16300954.ISSN2452-414XCao, J., Zhang, Q., Li, Y., Shi, W., Xu, L., Edge computing: Vision and challenges (2016) IEEE Iot J, 3, pp. 637-646Industrial Internet Consortium. Introduction to edge computing in IIoT. An Industrial Internet Consortium White Paper, IIC:WHT:IN24:V1.0:PB:20180618. Edge Computing Task GroupSchmidt, B., Wang, L., Galar, D., Semantic framework for predictive maintenance in a cloud environment (2017) Procedia CIRP, 62, pp. 583-588. , https://doi.org/10.1016/j.procir.2016.06.047Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V., Monitoring self-adaptive applications within edge computing frameworks: A state-of-the-art review (2018) J. Syst. Softw., 136, pp. 19-38. , Suppl. CFujishima, M., Mori, M., Nishimura, K., Takayama, M., Kato, Y., Development of sensing interface for preventive maintenance of machine tools (2017) Procedia CIRP, 61, pp. 796-799. , http://www.sciencedirect.com/science/article/pii/S2212827116313749, ISSN 2212-8271Cruz, A.M.E., (2013) ESTUDIO DE UN SISTEMA DE MANTENIMIENTO PREDIC-TIVO BASADO EN ANÁLISIS DE VIBRACIONES IMPLANTADO EN INSTA-LACIONES DE BOMBEO Y GENERACIÓN https://power-mi.com/es/content/power-mi-lanza-manual-de-anPease, S.G., Conway, P.P., West, A.A., Hybrid ToF and RSSI real-time semantic tracking with an adaptive industrial internet of things architecture (2017) J. Netw. Comput. Appl., 99, pp. 98-109Flores, R., Asiaín, T.I., Diagnóstico de Fallas en Máquinas Eléctricas Rota-torias Utilizando la Técnica de Espectros de Frecuencia de Bandas Laterales (2011) Información Tecnológica, 22 (4), pp. 73-84. , https://doi.org/10.4067/S0718-07642011000400009Talbot, C.E., Saavedra, P.N., Valenzuela, M.A., Diagnóstico de la Condición de las Barras de Motores de Inducción (2013) Información tecnológica, 24 (4), pp. 85-94. , https://doi.org/10.4067/S0718-07642013000400010Lin, S.-W., (2017) Architecture Alignment and InteroperabilityMourtzis, D., Gargallis, A., Zogopoulos, V., Modelling of customer oriented applications in product lifecycle using RAMI 4.0 Procedia Manuf., 28, pp. 31-36. , http://www.sciencedirect.com/science/article/pii/S2351978918313489Lin, S.W., Industrial internet reference architecture (2015) Technical Report, Industrial Internet Consortium (IIC)Packard, H., (2017) Real-Time Analysis and Condition Monitoring with Predictive Maintenance. Transforming Data into Value with HPE EdgelineGierej, S., The framework of business model in the context of industrial Internet of Things (2017) Procedia Eng., 182, pp. 206-212. , http://www.sciencedirect.com/science/article/pii/S1877705817313024, ISSN 1877-7058Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L., Edge computing: Vision and challenges (2016) IEEE Iot J, 3 (5), pp. 637-646Barroso, M., Dolores, M., (2019) Edge Computing Para IotBossio, G., de Angelo, C., García, G., (2006) Técnicas De Mantenimiento Predictivo En Máquinas Eléctricas: Diagnóstico De Fallas En El Rotor De Los Motores De Inducción. Megavatios, pp. 194-208. , ppBellini, A., On-field experience with online diagnosis of large induction motors cage failures using MCSA (2002) IEEE Trans. Ind. Appl., 38 (4), pp. 1045-1053. , https://doi.org/10.1109/TIA.2002.800591http://purl.org/coar/resource_type/c_c94fTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9170/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9170oai:repositorio.utb.edu.co:20.500.12585/91702023-04-21 15:43:47.402Repositorio Institucional UTBrepositorioutb@utb.edu.co