Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis

In this experimental–theoretical study, the effect of furan on Ziegler–Natta catalyst produc tivity, melt flow index (MFI), and mechanical properties of polypropylene were investigated. Through the analysis of the global and local reactivity of the reagents, it was determined that the furan acts as...

Full description

Autores:
Hernández Fernández, Joaquin
Puello-Polo, Esneyder
Marquez, Edgar
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12540
Acceso en línea:
https://hdl.handle.net/20.500.12585/12540
https://doi.org/10.3390/ijms241814368
Palabra clave:
Furan
Ziegler–Natta catalyst
Polypropylene synthesis
Flow rate
Density functional theory (DFT)
Mechanical properties
Adsorption affinity
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_4110d2892060be70cd65cde4a98947d0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12540
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
title Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
spellingShingle Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
Furan
Ziegler–Natta catalyst
Polypropylene synthesis
Flow rate
Density functional theory (DFT)
Mechanical properties
Adsorption affinity
LEMB
title_short Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
title_full Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
title_fullStr Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
title_full_unstemmed Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
title_sort Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis
dc.creator.fl_str_mv Hernández Fernández, Joaquin
Puello-Polo, Esneyder
Marquez, Edgar
dc.contributor.author.none.fl_str_mv Hernández Fernández, Joaquin
Puello-Polo, Esneyder
Marquez, Edgar
dc.subject.keywords.spa.fl_str_mv Furan
Ziegler–Natta catalyst
Polypropylene synthesis
Flow rate
Density functional theory (DFT)
Mechanical properties
Adsorption affinity
topic Furan
Ziegler–Natta catalyst
Polypropylene synthesis
Flow rate
Density functional theory (DFT)
Mechanical properties
Adsorption affinity
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description In this experimental–theoretical study, the effect of furan on Ziegler–Natta catalyst produc tivity, melt flow index (MFI), and mechanical properties of polypropylene were investigated. Through the analysis of the global and local reactivity of the reagents, it was determined that the furan acts as an electron donor. In contrast, the titanium of the ZN catalyst acts as an electron acceptor. It is postulated that this difference in reactivity could lead to forming a furan–titanium complex, which blocks the catalyst’s active sites and reduces its efficiency for propylene polymerization. Theoretical results showed a high adsorption affinity of furan to the active site of the Ti catalyst, indicating that furan tends to bind strongly to the catalyst, thus blocking the active sites and decreasing the availability for propylene polymerization. The experimental data revealed that the presence of furan significantly reduced the productivity of the ZN catalyst by 10, 20, and 41% for concentrations of 6, 12.23, and 25.03 ppm furan, respectively. In addition, a proportional relationship was observed between the furan concentration and the MFI melt index of the polymer, where the higher the furan concentration, the higher the MFI. Likewise, the presence of furan negatively affected the mechanical properties of polypropylene, especially the impact Izod value, with percentage decreases of 9, 18, and 22% for concentrations of 6, 12.23, and 25.03 ppm furan, respectively
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-10-03T14:03:55Z
dc.date.available.none.fl_str_mv 2023-10-03T14:03:55Z
dc.date.issued.none.fl_str_mv 2023-09-21
dc.date.submitted.none.fl_str_mv 2023-10-02
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Hernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis. Int. J. Mol. Sci. 2023, 24, 14368. https://doi.org/10.3390/ijms241814368.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12540
dc.identifier.url.none.fl_str_mv https://doi.org/10.3390/ijms241814368
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Hernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis. Int. J. Mol. Sci. 2023, 24, 14368. https://doi.org/10.3390/ijms241814368.
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12540
https://doi.org/10.3390/ijms241814368
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv International Journal of Molecular Sciences
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/1/ijms-24-14368.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/4/ijms-24-14368.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/5/ijms-24-14368.pdf.jpg
bitstream.checksum.fl_str_mv 9ab767f7973564dffe9007a066c28387
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
a298391386d55b338a23fc198d5ed779
17863295ba7ad27ff60ae9cf3168e732
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021786506887168
spelling Hernández Fernández, Joaquinc9c120ef-5174-40a7-b55e-d858079b16cePuello-Polo, Esneyderc7c2c83b-c3c0-4db0-a37b-0e98f7da05c0Marquez, Edgar89b04eaf-a0a4-4a6c-95fe-30b68a6ed20d2023-10-03T14:03:55Z2023-10-03T14:03:55Z2023-09-212023-10-02Hernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Experimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesis. Int. J. Mol. Sci. 2023, 24, 14368. https://doi.org/10.3390/ijms241814368.https://hdl.handle.net/20.500.12585/12540https://doi.org/10.3390/ijms241814368Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this experimental–theoretical study, the effect of furan on Ziegler–Natta catalyst produc tivity, melt flow index (MFI), and mechanical properties of polypropylene were investigated. Through the analysis of the global and local reactivity of the reagents, it was determined that the furan acts as an electron donor. In contrast, the titanium of the ZN catalyst acts as an electron acceptor. It is postulated that this difference in reactivity could lead to forming a furan–titanium complex, which blocks the catalyst’s active sites and reduces its efficiency for propylene polymerization. Theoretical results showed a high adsorption affinity of furan to the active site of the Ti catalyst, indicating that furan tends to bind strongly to the catalyst, thus blocking the active sites and decreasing the availability for propylene polymerization. The experimental data revealed that the presence of furan significantly reduced the productivity of the ZN catalyst by 10, 20, and 41% for concentrations of 6, 12.23, and 25.03 ppm furan, respectively. In addition, a proportional relationship was observed between the furan concentration and the MFI melt index of the polymer, where the higher the furan concentration, the higher the MFI. Likewise, the presence of furan negatively affected the mechanical properties of polypropylene, especially the impact Izod value, with percentage decreases of 9, 18, and 22% for concentrations of 6, 12.23, and 25.03 ppm furan, respectivelyUniversidad Tecnológica de Bolivar, Universidad de Cartagena, Universidad de la Costa12application/pdfenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2International Journal of Molecular SciencesExperimental–Density Functional Theory (DFT) Study of the Inhibitory Effect of Furan Residues in the Ziegler–Natta Catalyst during Polypropylene Synthesisinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85FuranZiegler–Natta catalystPolypropylene synthesisFlow rateDensity functional theory (DFT)Mechanical propertiesAdsorption affinityLEMBCartagena de IndiasCampus TecnológicoInvestigadoresBora, R.R.; Wang, R.; You, F. Waste polypropylene plastic recycling toward climate change mitigation and circular economy: Energy, environmental, and technoeconomic perspectives. ACS Sustain. Chem. Eng. 2020, 8, 16350–16363.Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2021, 56, 2245–2251.Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropy lene. J. Anal. Appl. Pyrolysis 2022, 161, 105385Kibria, G.; Masuk, N.I.; Safayet, R.; Nguyen, H.Q.; Mourshed, M. Plastic Waste: Challenges and Opportunities to Mitigate Pollution and Effective Management. Int. J. Environ. Res. 2023, 17, 20.Blazsó, M. Recent trends in analytical and applied pyrolysis of polymers. J. Anal. Appl. Pyrolysis 1997, 39, 1–25.Kruse, T.M.; Wong, H.-W.; Broadbelt, L.J. Mechanistic Modeling of Polymer Pyrolysis: Polypropylene. Macromolecules 2003, 36, 9594–9607Crews, C.; Castle, L. A review of the occurrence, formation and analysis of furan in heat-processed foods. Trends Food Sci. Technol. 2007, 18, 365–372Vranová, J.; Ciesarová, Z. Furan in Food-a Review. Czech J. Food Sci. 2009, 27, 1–10.Seok, Y.-J.; Her, J.-Y.; Kim, Y.-G.; Kim, M.Y.; Jeong, S.Y.; Kim, M.K.; Lee, J.-Y.; Kim, C.-I.; Yoon, H.-J.; Lee, K.-G. Furan in Thermally Processed Foods—A Review. Toxicol. Res. 2015, 31, 241–253.Mogol, B.A.; Gökmen, V. Thermal process contaminants: Acrylamide, chloropropanols and furan. Curr. Opin. Food Sci. 2016, 7, 86–92.Gandini, A. The application of the Diels-Alder reaction to polymer syntheses based on furan/maleimide reversible couplings. Polímeros 2005, 15, 95–101.Gandini, A. The behaviour of furan derivatives in polymerization reactions. Adv. Polym. Sci. 1977, 25, 47–96Hernández-Fernández, J.; Puello-Polo, E.; Márquez, E. Furan as Impurity in Green Ethylene and Its Effects on the Productivity of Random Ethylene–Propylene Copolymer Synthesis and Its Thermal and Mechanical Properties. Polymers 2023, 15, 2264Pavon, C.; Aldas, M.; Hernández-Fernández, J.; López-Martínez, J. Comparative characterization of gum rosins for their use as sustainable additives in polymeric matrices. J. Appl. Polym. Sci. 2021, 139, 51734.Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins during Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808.Cáceres, C.A.C.; Canevarolo, S.V. Correlação entre o Índice de Fluxo à Fusão e a Função da Distribuição de Cisão de Cadeia durante a degradação termo-mecânica do polipropileno. Polímeros 2006, 16, 294–298.Ferg, E.; Bolo, L. A correlation between the variable melt flow index and the molecular mass distribution of virgin and recycled polypropylene used in the manufacturing of battery cases. Polym. Test. 2013, 32, 1452–1459.Hernández-Fernández, J.; Vivas-Reyes, R.; Toloza, C.A.T. Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int. J. Mol. Sci. 2022, 23, 12148.Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052.Lorenzo, M.L.R. Determinación y Evaluación de las Emisiones de Dioxinas y Furanos en la Producción de Cemento en Es paña. 2008. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=17310&info=resumen&idioma=SPA (accessed on 5 August 2023)Sarra, A.J.; Clave, P. Dioxinas y Furanos Derivados de la Combustión. In Perspectivas; Revista Científica de la Universidad de Belgrano: Buenos Aires, Argentina, 2018; Volume 1. Available online: https://revistas.ub.edu.ar/index.php/Perspectivas/ article/view/15 (accessed on 5 August 2023).Hernández-Fernández, J.; Ortega-Toro, R.; Castro-Suarez, J.R. Theoretical–Experimental Study of the Action of Trace Amounts of Formaldehyde, Propionaldehyde, and Butyraldehyde as Inhibitors of the Ziegler–Natta Catalyst and the Synthesis of an Ethylene–Propylene Copolymer. Polymers 2023, 15, 1098. [Hernandez-Fernandez, J.; Lambis, H.; Reyes, R.V. Application of Pyrolysis for the Evaluation of Organic Compounds in Medical Plastic Waste Generated in the City of Cartagena-Colombia Applying TG-GC/MS. Int. J. Mol. Sci. 2023, 24, 5397.Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910.Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2019, 1614, 460736Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708.Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying parts per-billion levels of arsine and phosphine in nitrogen, hydrogen and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833.Fernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920.Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027.Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379Pavon, C.; Aldas, M.; López-Martínez, J.; Hernández-Fernández, J.; Arrieta, M.P. Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods 2021, 10, 1171.Fernández, J.H.; Guerra, Y.; Cano, H. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832.Gómez-Contreras, P.; Figueroa-Lopez, K.J.; Hernández-Fernández, J.; Rodríguez, M.C.; Ortega-Toro, R. Effect of Different Essential Oils on the Properties of Edible Coatings Based on Yam (Dioscorea rotundata L.) Starch and Its Application in Strawberry (Fragaria vesca L.) Preservation. Appl. Sci. 2021, 11, 11057Chacon, H.; Cano, H.; Fernández, J.H.; Guerra, Y.; Puello-Polo, E.; Ríos-Rojas, J.F.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753.Smith, M.B. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; John Wiley & Sons: Hoboken, NJ, USA, 2020.Gayatri, G.; Sastry, G.N. Bottlenecks in the prediction of regioselectivity of [4 + 2] cycloaddition reactions: An assessment of reactivity descriptors. J. Chem. Sci. 2005, 117, 573–582Domingo, L.R.; Picher, M.T.; Sáez, J.A. Toward an understanding of the unexpected regioselective Hetero-Diels-Alder reactions of asymmetric tetrazines with electron-rich ethylenes: A DFT study. J. Org. Chem. 2009, 74, 2726–2735.Parr, R.G.; Gadre, S.R.; Bartolotti, L.J. Local density functional theory of atoms and molecules. Proc. Natl. Acad. Sci. USA 1979, 76, 2522–2526.Parr, R.G.; Yang, W. Density Functional Approach to the Frontier-Electron Theory of Chemical Reactivity. J. Am. Chem. Soc. 1984, 106, 4049–4050Domingo, L.R.; Aurell, M.; Pérez, P.; Contreras, R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron 2002, 58, 4417–4423.Berkowitz, M.; Parr, R.G. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J. Chem. Phys. 1988, 88, 2554–2557.Langenaeker, W.; de Proft, F.; Geerlings, P. Development of local hardness-related reactivity indices: Their application in a study of the SE at monosubstituted benzenes within the HSAB context. J. Phys. Chem. 1995, 99, 6424–6431.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALijms-24-14368.pdfijms-24-14368.pdfapplication/pdf2102087https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/1/ijms-24-14368.pdf9ab767f7973564dffe9007a066c28387MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTijms-24-14368.pdf.txtijms-24-14368.pdf.txtExtracted texttext/plain54575https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/4/ijms-24-14368.pdf.txta298391386d55b338a23fc198d5ed779MD54THUMBNAILijms-24-14368.pdf.jpgijms-24-14368.pdf.jpgGenerated Thumbnailimage/jpeg8152https://repositorio.utb.edu.co/bitstream/20.500.12585/12540/5/ijms-24-14368.pdf.jpg17863295ba7ad27ff60ae9cf3168e732MD5520.500.12585/12540oai:repositorio.utb.edu.co:20.500.12585/125402023-10-04 00:18:33.133Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=