Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks

This article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master-slave methodology solves the OPF problem in two stages: the master stage estimates the...

Full description

Autores:
Montano, Jhon
Garzón, Oscar Daniel
Rosales Muñoz, Andrés Alfonso
Grisales-Noreña, L.F.
Montoya, Oscar Danilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12273
Acceso en línea:
https://hdl.handle.net/20.500.12585/12273
https://doi.org/10.1016/j.rineng.2022.100654
Palabra clave:
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_4011e260cf3e9334072e87605c441f01
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12273
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
title Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
spellingShingle Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
Microgrid;
DC-DC Converter;
Electric Potential
LEMB
title_short Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
title_full Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
title_fullStr Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
title_full_unstemmed Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
title_sort Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
dc.creator.fl_str_mv Montano, Jhon
Garzón, Oscar Daniel
Rosales Muñoz, Andrés Alfonso
Grisales-Noreña, L.F.
Montoya, Oscar Danilo
dc.contributor.author.none.fl_str_mv Montano, Jhon
Garzón, Oscar Daniel
Rosales Muñoz, Andrés Alfonso
Grisales-Noreña, L.F.
Montoya, Oscar Danilo
dc.subject.keywords.spa.fl_str_mv Microgrid;
DC-DC Converter;
Electric Potential
topic Microgrid;
DC-DC Converter;
Electric Potential
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master-slave methodology solves the OPF problem in two stages: the master stage estimates the solution to the OPF problem considering its constraints and variables, and the slave stage assesses the fitness of the solution proposed by the master stage. To validate the methodology suggested in this article, three test systems cited multiple times in the literature were used: the 10, 21 and the 69 nodes test systems. In addition, three scenarios varying the allowable power limits for the Distributed Generators (DGs) are presented; thus, the methodology explores solutions under different conditions. To prove its efficiency and robustness, the solution was compared with four other methods reported in the literature: Ant Lion Optimization (ALO), Black Hole Optimization (BHO), the Continuous Genetic Algorithm (CGA), and Particle Swarm Optimization (PSO). The results show that the methodology proposed here to reduce power losses presents the best solution in terms of standard deviation. © 2022 The Authors
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-07-21T15:40:14Z
dc.date.available.none.fl_str_mv 2023-07-21T15:40:14Z
dc.date.submitted.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Montano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales-Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering, 16(100654), 100654. https://doi.org/10.1016/j.rineng.2022.100654
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12273
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.rineng.2022.100654
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales-Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering, 16(100654), 100654. https://doi.org/10.1016/j.rineng.2022.100654
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12273
https://doi.org/10.1016/j.rineng.2022.100654
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Results in Engineering Volume 16, December 2022, 100654
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/1/1-s2.0-S2590123022003243-main.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/4/1-s2.0-S2590123022003243-main.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/5/1-s2.0-S2590123022003243-main.pdf.jpg
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
bba80321f6a266fde228962e5181ed56
5fd54791c283c20de79e79e60812f9d1
a5c810808eca8b42ac102e0d2102ed89
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021707310039040
spelling Montano, Jhon5edc0c05-f7f1-4a81-8b30-3981975c221dGarzón, Oscar Daniel4e3399aa-0e6c-4c74-95b6-4b8668044f0fRosales Muñoz, Andrés Alfonso1cadd052-2b2e-4872-b1d3-7679f6be5f2aGrisales-Noreña, L.F.98ba5e2d-fa38-40c5-a05c-d73772e8ab17Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea82023-07-21T15:40:14Z2023-07-21T15:40:14Z20222023Montano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales-Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering, 16(100654), 100654. https://doi.org/10.1016/j.rineng.2022.100654https://hdl.handle.net/20.500.12585/12273https://doi.org/10.1016/j.rineng.2022.100654Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master-slave methodology solves the OPF problem in two stages: the master stage estimates the solution to the OPF problem considering its constraints and variables, and the slave stage assesses the fitness of the solution proposed by the master stage. To validate the methodology suggested in this article, three test systems cited multiple times in the literature were used: the 10, 21 and the 69 nodes test systems. In addition, three scenarios varying the allowable power limits for the Distributed Generators (DGs) are presented; thus, the methodology explores solutions under different conditions. To prove its efficiency and robustness, the solution was compared with four other methods reported in the literature: Ant Lion Optimization (ALO), Black Hole Optimization (BHO), the Continuous Genetic Algorithm (CGA), and Particle Swarm Optimization (PSO). The results show that the methodology proposed here to reduce power losses presents the best solution in terms of standard deviation. © 2022 The Authors12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Results in Engineering Volume 16, December 2022, 100654Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasGarzon–Rivera, O.D., Grisales–Nore˜na, L.F., Ocampo, J.A., Montoya, O.D., Rojas–Montano, J.J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer (Open Access) (2020) Statistics, Optimization and Information Computing, 8 (4), pp. 846-857. Cited 10 times. www.iapress.org/index.php/soic/index doi: 10.19139/soic-2310-5070-1022Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031Montoya, O.D., Gil-Gonzalez, W., Garrido, V.M. Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation (Open Access) (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (2), art. no. 8664198, pp. 300-304. Cited 9 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2904211Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Montoya, O.D., Giral-Ramírez, D.A., Grisales-Noreña, L.F. Optimal economic-environmental dispatch in MT-HVDC systems via sine-cosine algorithm (2022) Results in Engineering, 13, art. no. 100348. Cited 7 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100348Grisales-Noreña, L.F., Montoya, O.D., Gil-González, W.J., Perea-Moreno, A.-J., Perea-Moreno, M.-A. A comparative study on power flow methods for direct-current networks considering processing time and numerical convergence errors (2020) Electronics (Switzerland), 9 (12), art. no. 2062, pp. 1-20. Cited 14 times. https://www.mdpi.com/2079-9292/9/12/2062/pdf doi: 10.3390/electronics9122062Grisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (Open Access) (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488Rault, P., Guillaud, X., Colas, F., Nguefeu, S. Investigation on interactions between AC and DC grids (2013) 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013, art. no. 6652229. Cited 17 times. ISBN: 978-146735669-5 doi: 10.1109/PTC.2013.6652229Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach (2020) Ain Shams Engineering Journal, 11 (2), pp. 409-418. Cited 51 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.08.011Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (Open Access) (2020) Engineering Science and Technology, an International Journal, 23 (3), pp. 527-533. Cited 22 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2019.06.010Chaudhuri, N., Chaudhuri, B., Majumder, R., Yazdani, A. Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control (Open Access) (2014) Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control, 9781118729106, pp. 1-263. Cited 193 times. http://www.wiley.com/remtitle.cgi?isbn=1118729102 ISBN: 978-111896048-6; 978-111872910-6 doi: 10.1002/9781118960486Prieto-Araujo, E., Egea-Alvarez, A., Fekriasl, S.F., Gomis-Bellmunt, O. DC Voltage Droop Control Design for Multiterminal HVDC Systems Considering AC and DC Grid Dynamics (Open Access) (2016) IEEE Transactions on Power Delivery, 31 (2), art. no. 7140832, pp. 575-585. Cited 92 times. doi: 10.1109/TPWRD.2015.2451531Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Grisales-Noreña, L.F. O. D. Garzón Rivera, J. A. Ocampo Toro, C. A. Ramos-Paja, M. A. Rodriguez Cabal, Metaheuristic Optimization Methods for Optimal Power Flow Analysis in Dc Distribution Networks.Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Montoya, O.D., Gil-González, W., Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electric Power Systems Research, 169, pp. 18-23. Cited 39 times. doi: 10.1016/j.epsr.2018.12.008Montoya, O., Gil-González, W., Grisales-Noreña, L. Optimal Power Dispatch of Dgs in Dc Power Grids: A Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the Opf Problem.Rosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (Open Access) (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703Giraldo, J.A., Montoya, O.D., Grisales-Noreña, L.F., Gil-González, W., Holguín, M. Optimal power flow solution in direct current grids using Sine-Cosine algorithm (2019) Journal of Physics: Conference Series, 1403 (1), art. no. 012009. Cited 8 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1403/1/012009Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (Open Access) (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H. The Arithmetic Optimization Algorithm (2021) Computer Methods in Applied Mechanics and Engineering, 376, art. no. 113609. Cited 1106 times. http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/ doi: 10.1016/j.cma.2020.113609Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (Open Access) (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069Kaur, S., Kumbhar, G., Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 63, pp. 609-617. Cited 193 times. doi: 10.1016/j.ijepes.2014.06.023Sultana, S., Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Applied Soft Computing Journal, 40, pp. 391-404. Cited 130 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2015.11.036Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL1-s2.0-S2590123022003243-main.pdf1-s2.0-S2590123022003243-main.pdfapplication/pdf2907346https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/1/1-s2.0-S2590123022003243-main.pdfbba80321f6a266fde228962e5181ed56MD51TEXT1-s2.0-S2590123022003243-main.pdf.txt1-s2.0-S2590123022003243-main.pdf.txtExtracted texttext/plain65568https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/4/1-s2.0-S2590123022003243-main.pdf.txt5fd54791c283c20de79e79e60812f9d1MD54THUMBNAIL1-s2.0-S2590123022003243-main.pdf.jpg1-s2.0-S2590123022003243-main.pdf.jpgGenerated Thumbnailimage/jpeg8439https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/5/1-s2.0-S2590123022003243-main.pdf.jpga5c810808eca8b42ac102e0d2102ed89MD5520.500.12585/12273oai:repositorio.utb.edu.co:20.500.12585/122732023-07-22 00:17:51.622Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=