Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks
This article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master-slave methodology solves the OPF problem in two stages: the master stage estimates the...
- Autores:
-
Montano, Jhon
Garzón, Oscar Daniel
Rosales Muñoz, Andrés Alfonso
Grisales-Noreña, L.F.
Montoya, Oscar Danilo
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12273
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12273
https://doi.org/10.1016/j.rineng.2022.100654
- Palabra clave:
- Microgrid;
DC-DC Converter;
Electric Potential
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_4011e260cf3e9334072e87605c441f01 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12273 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks |
title |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks |
spellingShingle |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks Microgrid; DC-DC Converter; Electric Potential LEMB |
title_short |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks |
title_full |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks |
title_fullStr |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks |
title_full_unstemmed |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks |
title_sort |
Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks |
dc.creator.fl_str_mv |
Montano, Jhon Garzón, Oscar Daniel Rosales Muñoz, Andrés Alfonso Grisales-Noreña, L.F. Montoya, Oscar Danilo |
dc.contributor.author.none.fl_str_mv |
Montano, Jhon Garzón, Oscar Daniel Rosales Muñoz, Andrés Alfonso Grisales-Noreña, L.F. Montoya, Oscar Danilo |
dc.subject.keywords.spa.fl_str_mv |
Microgrid; DC-DC Converter; Electric Potential |
topic |
Microgrid; DC-DC Converter; Electric Potential LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
This article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master-slave methodology solves the OPF problem in two stages: the master stage estimates the solution to the OPF problem considering its constraints and variables, and the slave stage assesses the fitness of the solution proposed by the master stage. To validate the methodology suggested in this article, three test systems cited multiple times in the literature were used: the 10, 21 and the 69 nodes test systems. In addition, three scenarios varying the allowable power limits for the Distributed Generators (DGs) are presented; thus, the methodology explores solutions under different conditions. To prove its efficiency and robustness, the solution was compared with four other methods reported in the literature: Ant Lion Optimization (ALO), Black Hole Optimization (BHO), the Continuous Genetic Algorithm (CGA), and Particle Swarm Optimization (PSO). The results show that the methodology proposed here to reduce power losses presents the best solution in terms of standard deviation. © 2022 The Authors |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T15:40:14Z |
dc.date.available.none.fl_str_mv |
2023-07-21T15:40:14Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales-Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering, 16(100654), 100654. https://doi.org/10.1016/j.rineng.2022.100654 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12273 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.rineng.2022.100654 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales-Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering, 16(100654), 100654. https://doi.org/10.1016/j.rineng.2022.100654 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12273 https://doi.org/10.1016/j.rineng.2022.100654 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
12 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Results in Engineering Volume 16, December 2022, 100654 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/1/1-s2.0-S2590123022003243-main.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/4/1-s2.0-S2590123022003243-main.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/5/1-s2.0-S2590123022003243-main.pdf.jpg |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 bba80321f6a266fde228962e5181ed56 5fd54791c283c20de79e79e60812f9d1 a5c810808eca8b42ac102e0d2102ed89 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021707310039040 |
spelling |
Montano, Jhon5edc0c05-f7f1-4a81-8b30-3981975c221dGarzón, Oscar Daniel4e3399aa-0e6c-4c74-95b6-4b8668044f0fRosales Muñoz, Andrés Alfonso1cadd052-2b2e-4872-b1d3-7679f6be5f2aGrisales-Noreña, L.F.98ba5e2d-fa38-40c5-a05c-d73772e8ab17Montoya, Oscar Danilo9fa8a75a-58fa-436d-a6e2-d80f718a4ea82023-07-21T15:40:14Z2023-07-21T15:40:14Z20222023Montano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales-Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering, 16(100654), 100654. https://doi.org/10.1016/j.rineng.2022.100654https://hdl.handle.net/20.500.12585/12273https://doi.org/10.1016/j.rineng.2022.100654Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis article presents a methodology to solve to the Optimal Power Flow (OPF) problem in Direct Current (DC) networks using the Arithmetic Optimization Algorithm (AOA) and Successive Approximation (SA). This master-slave methodology solves the OPF problem in two stages: the master stage estimates the solution to the OPF problem considering its constraints and variables, and the slave stage assesses the fitness of the solution proposed by the master stage. To validate the methodology suggested in this article, three test systems cited multiple times in the literature were used: the 10, 21 and the 69 nodes test systems. In addition, three scenarios varying the allowable power limits for the Distributed Generators (DGs) are presented; thus, the methodology explores solutions under different conditions. To prove its efficiency and robustness, the solution was compared with four other methods reported in the literature: Ant Lion Optimization (ALO), Black Hole Optimization (BHO), the Continuous Genetic Algorithm (CGA), and Particle Swarm Optimization (PSO). The results show that the methodology proposed here to reduce power losses presents the best solution in terms of standard deviation. © 2022 The Authors12 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Results in Engineering Volume 16, December 2022, 100654Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Microgrid;DC-DC Converter;Electric PotentialLEMBCartagena de IndiasGarzon–Rivera, O.D., Grisales–Nore˜na, L.F., Ocampo, J.A., Montoya, O.D., Rojas–Montano, J.J. Optimal Power Flow in Direct Current Networks Using the Antlion Optimizer (Open Access) (2020) Statistics, Optimization and Information Computing, 8 (4), pp. 846-857. Cited 10 times. www.iapress.org/index.php/soic/index doi: 10.19139/soic-2310-5070-1022Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031Montoya, O.D., Gil-Gonzalez, W., Garrido, V.M. Voltage stability margin in DC grids with CPLs: A recursive Newton-raphson approximation (Open Access) (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (2), art. no. 8664198, pp. 300-304. Cited 9 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2904211Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Montoya, O.D., Giral-Ramírez, D.A., Grisales-Noreña, L.F. Optimal economic-environmental dispatch in MT-HVDC systems via sine-cosine algorithm (2022) Results in Engineering, 13, art. no. 100348. Cited 7 times. https://www.journals.elsevier.com/results-in-engineering doi: 10.1016/j.rineng.2022.100348Grisales-Noreña, L.F., Montoya, O.D., Gil-González, W.J., Perea-Moreno, A.-J., Perea-Moreno, M.-A. A comparative study on power flow methods for direct-current networks considering processing time and numerical convergence errors (2020) Electronics (Switzerland), 9 (12), art. no. 2062, pp. 1-20. Cited 14 times. https://www.mdpi.com/2079-9292/9/12/2062/pdf doi: 10.3390/electronics9122062Grisales-Noreña, L.F., Montoya, O.D., Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm (Open Access) (2020) Journal of Energy Storage, 29, art. no. 101488. Cited 58 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.101488Rault, P., Guillaud, X., Colas, F., Nguefeu, S. Investigation on interactions between AC and DC grids (2013) 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013, art. no. 6652229. Cited 17 times. ISBN: 978-146735669-5 doi: 10.1109/PTC.2013.6652229Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach (2020) Ain Shams Engineering Journal, 11 (2), pp. 409-418. Cited 51 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.08.011Montoya, O.D. A convex OPF approximation for selecting the best candidate nodes for optimal location of power sources on DC resistive networks (Open Access) (2020) Engineering Science and Technology, an International Journal, 23 (3), pp. 527-533. Cited 22 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2019.06.010Chaudhuri, N., Chaudhuri, B., Majumder, R., Yazdani, A. Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control (Open Access) (2014) Multi-Terminal Direct-Current Grids: Modeling, Analysis, and Control, 9781118729106, pp. 1-263. Cited 193 times. http://www.wiley.com/remtitle.cgi?isbn=1118729102 ISBN: 978-111896048-6; 978-111872910-6 doi: 10.1002/9781118960486Prieto-Araujo, E., Egea-Alvarez, A., Fekriasl, S.F., Gomis-Bellmunt, O. DC Voltage Droop Control Design for Multiterminal HVDC Systems Considering AC and DC Grid Dynamics (Open Access) (2016) IEEE Transactions on Power Delivery, 31 (2), art. no. 7140832, pp. 575-585. Cited 92 times. doi: 10.1109/TPWRD.2015.2451531Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Grisales-Noreña, L.F. O. D. Garzón Rivera, J. A. Ocampo Toro, C. A. Ramos-Paja, M. A. Rodriguez Cabal, Metaheuristic Optimization Methods for Optimal Power Flow Analysis in Dc Distribution Networks.Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8279503, pp. 5496-5506. Cited 113 times. doi: 10.1109/TPWRS.2018.2801280Montoya, O.D., Gil-González, W., Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids (2019) Electric Power Systems Research, 169, pp. 18-23. Cited 39 times. doi: 10.1016/j.epsr.2018.12.008Montoya, O., Gil-González, W., Grisales-Noreña, L. Optimal Power Dispatch of Dgs in Dc Power Grids: A Hybrid Gauss-Seidel-Genetic-Algorithm Methodology for Solving the Opf Problem.Rosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (Open Access) (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703Giraldo, J.A., Montoya, O.D., Grisales-Noreña, L.F., Gil-González, W., Holguín, M. Optimal power flow solution in direct current grids using Sine-Cosine algorithm (2019) Journal of Physics: Conference Series, 1403 (1), art. no. 012009. Cited 8 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/1403/1/012009Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (Open Access) (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H. The Arithmetic Optimization Algorithm (2021) Computer Methods in Applied Mechanics and Engineering, 376, art. no. 113609. Cited 1106 times. http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/http://www.journals.elsevier.com/computer-methods-in-applied-mechanics-and-engineering/ doi: 10.1016/j.cma.2020.113609Montoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (Open Access) (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069Kaur, S., Kumbhar, G., Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems (Open Access) (2014) International Journal of Electrical Power and Energy Systems, 63, pp. 609-617. Cited 193 times. doi: 10.1016/j.ijepes.2014.06.023Sultana, S., Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Applied Soft Computing Journal, 40, pp. 391-404. Cited 130 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2015.11.036Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) Journal of Energy Storage, 21, pp. 1-8. Cited 90 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2018.10.025http://purl.org/coar/resource_type/c_6501CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53ORIGINAL1-s2.0-S2590123022003243-main.pdf1-s2.0-S2590123022003243-main.pdfapplication/pdf2907346https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/1/1-s2.0-S2590123022003243-main.pdfbba80321f6a266fde228962e5181ed56MD51TEXT1-s2.0-S2590123022003243-main.pdf.txt1-s2.0-S2590123022003243-main.pdf.txtExtracted texttext/plain65568https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/4/1-s2.0-S2590123022003243-main.pdf.txt5fd54791c283c20de79e79e60812f9d1MD54THUMBNAIL1-s2.0-S2590123022003243-main.pdf.jpg1-s2.0-S2590123022003243-main.pdf.jpgGenerated Thumbnailimage/jpeg8439https://repositorio.utb.edu.co/bitstream/20.500.12585/12273/5/1-s2.0-S2590123022003243-main.pdf.jpga5c810808eca8b42ac102e0d2102ed89MD5520.500.12585/12273oai:repositorio.utb.edu.co:20.500.12585/122732023-07-22 00:17:51.622Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |