Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping

High-resolution (HR) satellite image time series (SITS) are a valuable data source for analyzing land cover change (LCC) due to their large amount of spatial, spectral, and temporal information. However, most existing LCC detection methods focus on binary change detection (CD) within a single year a...

Full description

Autores:
Meshkini, Khatereh
Solano-Correa, Yady Tatiana
Bovolo, Francesca
Bruzzone, Lorenzo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12726
Acceso en línea:
https://hdl.handle.net/20.500.12585/12726
Palabra clave:
Dynamic time warping (DTW)
Hypertemporal feature
Land cover change (LCC)
Land cover (LC) transition
Multiannual
Remote sensing (RS)
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_3d06e755d7744c60bad7d69823bb1814
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12726
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
title Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
spellingShingle Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
Dynamic time warping (DTW)
Hypertemporal feature
Land cover change (LCC)
Land cover (LC) transition
Multiannual
Remote sensing (RS)
LEMB
title_short Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
title_full Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
title_fullStr Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
title_full_unstemmed Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
title_sort Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping
dc.creator.fl_str_mv Meshkini, Khatereh
Solano-Correa, Yady Tatiana
Bovolo, Francesca
Bruzzone, Lorenzo
dc.contributor.author.none.fl_str_mv Meshkini, Khatereh
Solano-Correa, Yady Tatiana
Bovolo, Francesca
Bruzzone, Lorenzo
dc.subject.keywords.spa.fl_str_mv Dynamic time warping (DTW)
Hypertemporal feature
Land cover change (LCC)
Land cover (LC) transition
Multiannual
Remote sensing (RS)
topic Dynamic time warping (DTW)
Hypertemporal feature
Land cover change (LCC)
Land cover (LC) transition
Multiannual
Remote sensing (RS)
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description High-resolution (HR) satellite image time series (SITS) are a valuable data source for analyzing land cover change (LCC) due to their large amount of spatial, spectral, and temporal information. However, most existing LCC detection methods focus on binary change detection (CD) within a single year and fail to provide detailed information about the specific type of change. In this study, we propose a multiannual CD approach that identifies changes occurring between consecutive years and provides information about the type of LC transition. The proposed approach exploits multiannual and multispectral SITS to generate a hypertemporal feature space (FS). This FS is analyzed to create a set of CD maps that indicate the time, probability, and type of change. To measure the similarity between pixel time series, we use dynamic time warping (DTW) in the space of hypertemporal features. A hierarchical clustering technique is exploited to develop a set of class prototypes (CPs) that represent the characteristics of different LC classes. The CPs are then used to identify the most probable LC transition for each changed pixel. Two test areas were selected to evaluate the effectiveness of the proposed approach. The first one is located in Amazon and spans the years 2015 to 2019; and the second one is located in Sahel-Africa and covers the years 2015 and 2016, using multiannual Landsat 7 and 8 SITS. The results demonstrate that the proposed approach is effective in detecting multiannual changes and in identifying the LC transitions.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-12T13:51:58Z
dc.date.available.none.fl_str_mv 2024-09-12T13:51:58Z
dc.date.issued.none.fl_str_mv 2024-07-22
dc.date.submitted.none.fl_str_mv 2024-09-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv K. Meshkini, Y. T. Solano-Correa, F. Bovolo and L. Bruzzone, “Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping,” IEEE Trans. on Geosci. and Remote Sens., vol. 62, pp. 1-12. Jul. 2024. DOI: 10.1109/TGRS.2024.3431631.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12726
dc.identifier.doi.none.fl_str_mv 10.1109/TGRS.2024.3431631
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv K. Meshkini, Y. T. Solano-Correa, F. Bovolo and L. Bruzzone, “Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping,” IEEE Trans. on Geosci. and Remote Sens., vol. 62, pp. 1-12. Jul. 2024. DOI: 10.1109/TGRS.2024.3431631.
10.1109/TGRS.2024.3431631
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12726
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Brazil y Sahel
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ciencias Básicas
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv IEEE Transactions on Geoscience and Remote Sensing
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/1/2024-J-Multiannual%20Change%20Detection%20in%20Long%20and%20Dense%20Satellite%20Image%20Time%20Series%20Based%20on%20Dynamic%20Time%20Warping.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/3/2024-J-Multiannual%20Change%20Detection%20in%20Long%20and%20Dense%20Satellite%20Image%20Time%20Series%20Based%20on%20Dynamic%20Time%20Warping.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/4/2024-J-Multiannual%20Change%20Detection%20in%20Long%20and%20Dense%20Satellite%20Image%20Time%20Series%20Based%20on%20Dynamic%20Time%20Warping.pdf.jpg
bitstream.checksum.fl_str_mv a08ccdeff057c79fde9fa357597cb4d1
e20ad307a1c5f3f25af9304a7a7c86b6
6c4fc8ec71b8a5ed3bc6e86268cf7b35
b982cb1d8d80d663bdeaaf0abefbfb44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021803661590528
spelling Meshkini, Khaterehe1657908-5a71-4074-b0ca-13e9bb0017bcSolano-Correa, Yady Tatianac3d85b81-c6f5-4ad0-80dc-65e4cf4283b1Bovolo, Francesca3b4222a3-2890-417f-9c1b-efaaaf968b29Bruzzone, Lorenzob8f57b84-bfb7-4157-91e4-d763d266bb4aBrazil y Sahel2024-09-12T13:51:58Z2024-09-12T13:51:58Z2024-07-222024-09-11K. Meshkini, Y. T. Solano-Correa, F. Bovolo and L. Bruzzone, “Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping,” IEEE Trans. on Geosci. and Remote Sens., vol. 62, pp. 1-12. Jul. 2024. DOI: 10.1109/TGRS.2024.3431631.https://hdl.handle.net/20.500.12585/1272610.1109/TGRS.2024.3431631Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarHigh-resolution (HR) satellite image time series (SITS) are a valuable data source for analyzing land cover change (LCC) due to their large amount of spatial, spectral, and temporal information. However, most existing LCC detection methods focus on binary change detection (CD) within a single year and fail to provide detailed information about the specific type of change. In this study, we propose a multiannual CD approach that identifies changes occurring between consecutive years and provides information about the type of LC transition. The proposed approach exploits multiannual and multispectral SITS to generate a hypertemporal feature space (FS). This FS is analyzed to create a set of CD maps that indicate the time, probability, and type of change. To measure the similarity between pixel time series, we use dynamic time warping (DTW) in the space of hypertemporal features. A hierarchical clustering technique is exploited to develop a set of class prototypes (CPs) that represent the characteristics of different LC classes. The CPs are then used to identify the most probable LC transition for each changed pixel. Two test areas were selected to evaluate the effectiveness of the proposed approach. The first one is located in Amazon and spans the years 2015 to 2019; and the second one is located in Sahel-Africa and covers the years 2015 and 2016, using multiannual Landsat 7 and 8 SITS. The results demonstrate that the proposed approach is effective in detecting multiannual changes and in identifying the LC transitions.12 páginasapplication/pdfengIEEE Transactions on Geoscience and Remote SensingMultiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warpinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Dynamic time warping (DTW)Hypertemporal featureLand cover change (LCC)Land cover (LC) transitionMultiannualRemote sensing (RS)LEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasCiencias BásicasCampus TecnológicoInvestigadoresJ. Verbesselt, A. Zeileis and M. Herold, "Near real-time disturbance detection using satellite image time series", Remote Sens. Environ., vol. 123, pp. 98-108, Aug. 2012.M. Decuyper et al., "Continuous monitoring of forest change dynamics with satellite time series", Remote Sens. Environ., vol. 269, Feb. 2022.D. Lu, E. Moran and S. Hetrick, "Detection of impervious surface change with multitemporal Landsat images in an urban–rural frontier", ISPRS J. Photogramm. Remote Sens., vol. 66, no. 3, pp. 298-306, May 2011.S. Stramondo, C. Bignami, M. Chini, N. Pierdicca and A. Tertulliani, "Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies", Int. J. Remote Sens., vol. 27, no. 20, pp. 4433-4447, Oct. 2006.K. Meshkini, F. Bovolo and L. Bruzzone, "A 3D CNN approach for change detection in HR satellite image time series based on a pretrained 2D CNN", Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. 43, pp. 143-150, May 2022.A. Rodrigues, A. R. S. Marcal and M. Cunha, "Monitoring vegetation dynamics inferred by satellite data using the PhenoSat tool", IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2096-2104, Apr. 2013.Y. T. Solano-Correa, F. Bovolo, L. Bruzzone and D. Fernández-Prieto, "A method for the analysis of small crop fields in Sentinel-2 dense time series", IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3, pp. 2150-2164, Mar. 2020.C. Senf, D. Pflugmacher, M. A. Wulder and P. Hostert, "Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series", Remote Sens. Environ., vol. 170, pp. 166-177, Dec. 2015.A. Asokan and J. Anitha, "Change detection techniques for remote sensing applications: A survey", Earth Sci. Inform., vol. 12, no. 2, pp. 143-160, Jun. 2019.G. Jianya, S. Haigang, M. Guorui and Z. Qiming, "A review of multi-temporal remote sensing data change detection algorithms", Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., vol. 37, no. B7, pp. 757-762, 2008.I. Pôças, M. Cunha, A. R. S. Marcal and L. S. Pereira, "An evaluation of changes in a mountainous rural landscape of Northeast Portugal using remotely sensed data", Landscape Urban Planning, vol. 101, no. 3, pp. 253-261, Jun. 2011.X. Zhang, P. Xiao, X. Feng and M. Yuan, "Separate segmentation of multi-temporal high-resolution remote sensing images for objectbased change detection in urban area", Remote Sens. Environ., vol. 201, pp. 243-255, Nov. 2017.G. Vivekananda, R. Swathi and A. Sujith, "Multi-temporal image analysis for LULC classification and change detection", Eur. J. Remote Sens., vol. 54, no. 2, pp. 189-199, Mar. 2021.B. Wang, J. Choi, S. Choi, S. Lee, P. Wu and Y. Gao, "Image fusionbased land cover change detection using multi-temporal high-resolution satellite images", Remote Sens., vol. 9, no. 8, pp. 804, Aug. 2017.S. Jamali, P. Jönsson, L. Eklundh, J. Ardö and J. Seaquist, "Detecting changes in vegetation trends using time series segmentation", Remote Sens. Environ., vol. 156, pp. 182-195, Jan. 2015.W. B. Cohen, Z. Yang and R. E. Kennedy, "Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms", Remote Sens. Environ., vol. 114, no. 12, pp. 2897-2910, 2010.R. De Jong, J. Verbesselt, M. E. Schaepman and S. De Bruin, "Trend changes in global greening and browning: Contribution of short-term trends to longer-term change", Global Change Biol., vol. 18, no. 2, pp. 642-655, 2012.E. B. Brooks, R. H. Wynne, V. A. Thomas, C. E. Blinn and J. W. Coulston, "On-the-fly massively multitemporal change detection using statistical quality control charts and Landsat data", IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3316-3332, Jun. 2014.J. Verbesselt, R. Hyndman, G. Newnham and D. Culvenor, "Detecting trend and seasonal changes in satellite image time series", Remote Sens. Environ., vol. 114, no. 1, pp. 106-115, Jan. 2010.J. Lambert, C. Drenou, J.-P. Denux, G. Balent and V. Cheret, "Monitoring forest decline through remote sensing time series analysis", GIScience Remote Sens., vol. 50, no. 4, pp. 437-457, Aug. 2013.O. A. C. Júnior et al., "A new approach to change vector analysis using distance and similarity measures", Remote Sens., vol. 3, no. 11, pp. 2473-2493, Nov. 2011F. Bovolo and L. Bruzzone, "A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain", IEEE Trans. Geosci. Remote Sens., vol. 45, no. 1, pp. 218-236, Jan. 2007.K. Meshkini, F. Bovolo and L. Bruzzone, "A multi-feature hypertemporal change vector analysis method for change detection in multi-annual time series of HR satellite images", Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), pp. 8315-8318, Jul. 2023.D. J. Berndt and J. Clifford, "Using dynamic time warping to find patterns in time series", Proc. KDD Workshop, pp. 356-370, 1994.T. Rakthanmanon et al., "Searching and mining trillions of time series subsequences under dynamic time warping", Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, pp. 262-270, Aug. 2012.F. Petitjean, J. Inglada and P. Gançarski, "Satellite image time series analysis under time warping", IEEE Trans. Geosci. Remote Sens., vol. 50, no. 8, pp. 3081-3095, Aug. 2012.F. Petitjean and J. Weber, "Efficient satellite image time series analysis under time warping", IEEE Geosci. Remote Sens. Lett., vol. 11, no. 6, pp. 1143-1147, Jun. 2014.M. Baumann, M. Ozdogan, A. D. Richardson and V. C. Radeloff, "Phenology from Landsat when data is scarce: Using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves", Int. J. Appl. Earth Observ. Geoinf., vol. 54, pp. 72-83, Feb. 2017.M. Belgiu and O. Csillik, "Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis", Remote Sens. Environ., vol. 204, pp. 509-523, Jan. 2018.Google Earth Engine, May 2023, [online] Available: https://developers.google.com/earth-engine/datasets/catalog/landsat.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL2024-J-Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping.pdf2024-J-Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping.pdfMultiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warpingapplication/pdf27089012https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/1/2024-J-Multiannual%20Change%20Detection%20in%20Long%20and%20Dense%20Satellite%20Image%20Time%20Series%20Based%20on%20Dynamic%20Time%20Warping.pdfa08ccdeff057c79fde9fa357597cb4d1MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT2024-J-Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping.pdf.txt2024-J-Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping.pdf.txtExtracted texttext/plain64710https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/3/2024-J-Multiannual%20Change%20Detection%20in%20Long%20and%20Dense%20Satellite%20Image%20Time%20Series%20Based%20on%20Dynamic%20Time%20Warping.pdf.txt6c4fc8ec71b8a5ed3bc6e86268cf7b35MD53THUMBNAIL2024-J-Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping.pdf.jpg2024-J-Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping.pdf.jpgGenerated Thumbnailimage/jpeg10902https://repositorio.utb.edu.co/bitstream/20.500.12585/12726/4/2024-J-Multiannual%20Change%20Detection%20in%20Long%20and%20Dense%20Satellite%20Image%20Time%20Series%20Based%20on%20Dynamic%20Time%20Warping.pdf.jpgb982cb1d8d80d663bdeaaf0abefbfb44MD5420.500.12585/12726oai:repositorio.utb.edu.co:20.500.12585/127262024-09-13 00:18:22.662Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=