Multiannual Change Detection in Long and Dense Satellite Image Time Series Based on Dynamic Time Warping

High-resolution (HR) satellite image time series (SITS) are a valuable data source for analyzing land cover change (LCC) due to their large amount of spatial, spectral, and temporal information. However, most existing LCC detection methods focus on binary change detection (CD) within a single year a...

Full description

Autores:
Meshkini, Khatereh
Solano-Correa, Yady Tatiana
Bovolo, Francesca
Bruzzone, Lorenzo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12726
Acceso en línea:
https://hdl.handle.net/20.500.12585/12726
Palabra clave:
Dynamic time warping (DTW)
Hypertemporal feature
Land cover change (LCC)
Land cover (LC) transition
Multiannual
Remote sensing (RS)
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
Description
Summary:High-resolution (HR) satellite image time series (SITS) are a valuable data source for analyzing land cover change (LCC) due to their large amount of spatial, spectral, and temporal information. However, most existing LCC detection methods focus on binary change detection (CD) within a single year and fail to provide detailed information about the specific type of change. In this study, we propose a multiannual CD approach that identifies changes occurring between consecutive years and provides information about the type of LC transition. The proposed approach exploits multiannual and multispectral SITS to generate a hypertemporal feature space (FS). This FS is analyzed to create a set of CD maps that indicate the time, probability, and type of change. To measure the similarity between pixel time series, we use dynamic time warping (DTW) in the space of hypertemporal features. A hierarchical clustering technique is exploited to develop a set of class prototypes (CPs) that represent the characteristics of different LC classes. The CPs are then used to identify the most probable LC transition for each changed pixel. Two test areas were selected to evaluate the effectiveness of the proposed approach. The first one is located in Amazon and spans the years 2015 to 2019; and the second one is located in Sahel-Africa and covers the years 2015 and 2016, using multiannual Landsat 7 and 8 SITS. The results demonstrate that the proposed approach is effective in detecting multiannual changes and in identifying the LC transitions.