Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques
Cosmic rays are highly energetic particles originating from astrophysical events outside the Solar System. In this study, we analyze the time series of cosmic ray flux measured by neutron detectors at 16 monitoring stations distributed worldwide. By applying visibility graph analysis, we explore the...
- Autores:
-
Sierra Porta, David
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12645
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12645
- Palabra clave:
- Edge of chaos
Geographic location
Cosmic rays
Solar activity
Solar system
Network analysis
Neutron detectors
LEMB
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UTB2_3bc7e2e3dd4e35f9063026ef0f9d4512 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12645 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques |
title |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques |
spellingShingle |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques Edge of chaos Geographic location Cosmic rays Solar activity Solar system Network analysis Neutron detectors LEMB |
title_short |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques |
title_full |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques |
title_fullStr |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques |
title_full_unstemmed |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques |
title_sort |
Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques |
dc.creator.fl_str_mv |
Sierra Porta, David |
dc.contributor.author.none.fl_str_mv |
Sierra Porta, David |
dc.subject.keywords.spa.fl_str_mv |
Edge of chaos Geographic location Cosmic rays Solar activity Solar system Network analysis Neutron detectors |
topic |
Edge of chaos Geographic location Cosmic rays Solar activity Solar system Network analysis Neutron detectors LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Cosmic rays are highly energetic particles originating from astrophysical events outside the Solar System. In this study, we analyze the time series of cosmic ray flux measured by neutron detectors at 16 monitoring stations distributed worldwide. By applying visibility graph analysis, we explore the relationship between the magnetic rigidity cutoff (Rc ) and the fractality exhibed from topology of the cosmic ray time series. Our results reveal a significant association between the magnetic rigidity cutoff and the fractality of the cosmic ray time series. Specifically, the analysis of visibility graphs and network properties demonstrates that the magnetic rigidity is inversely related to the magnetic rigidity cutoff. The identified relationship between magnetic rigidity and fractality provides insights into the chaotic nature of cosmic ray variations and their potential uses for predictability. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-03-04T13:01:43Z |
dc.date.available.none.fl_str_mv |
2024-03-04T13:01:43Z |
dc.date.issued.none.fl_str_mv |
2024-01-18 |
dc.date.submitted.none.fl_str_mv |
2024-02-04 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
D. Sierra-Porta; Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques. Chaos 1 February 2024; 34 (2): 023114. https://doi.org/10.1063/5.0167156 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12645 |
dc.identifier.doi.none.fl_str_mv |
10.1063/5.0167156 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
D. Sierra-Porta; Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques. Chaos 1 February 2024; 34 (2): 023114. https://doi.org/10.1063/5.0167156 10.1063/5.0167156 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12645 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
7 pag |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Chaos: An Interdisciplinary Journal of Nonlinear Science |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/1/Visibility_GCR_2023_AIP%20%282%29.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/3/Visibility_GCR_2023_AIP%20%282%29.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/4/Visibility_GCR_2023_AIP%20%282%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
df200c5d95d5cc7cc0439d69b4893af5 e20ad307a1c5f3f25af9304a7a7c86b6 35b614351ac1ecc97804d35efd82a2f3 6ed2edf2a6497f67681448a2f3e7c468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021586363088896 |
spelling |
Sierra Porta, David88a81b30-0b54-4821-b432-affefb13412b2024-03-04T13:01:43Z2024-03-04T13:01:43Z2024-01-182024-02-04D. Sierra-Porta; Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques. Chaos 1 February 2024; 34 (2): 023114. https://doi.org/10.1063/5.0167156https://hdl.handle.net/20.500.12585/1264510.1063/5.0167156Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarCosmic rays are highly energetic particles originating from astrophysical events outside the Solar System. In this study, we analyze the time series of cosmic ray flux measured by neutron detectors at 16 monitoring stations distributed worldwide. By applying visibility graph analysis, we explore the relationship between the magnetic rigidity cutoff (Rc ) and the fractality exhibed from topology of the cosmic ray time series. Our results reveal a significant association between the magnetic rigidity cutoff and the fractality of the cosmic ray time series. Specifically, the analysis of visibility graphs and network properties demonstrates that the magnetic rigidity is inversely related to the magnetic rigidity cutoff. The identified relationship between magnetic rigidity and fractality provides insights into the chaotic nature of cosmic ray variations and their potential uses for predictability.7 pagapplication/pdfengChaos: An Interdisciplinary Journal of Nonlinear ScienceRelationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniquesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Edge of chaosGeographic locationCosmic raysSolar activitySolar systemNetwork analysisNeutron detectorsLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasPúblico generalBlandford, R. and Eichler, D., “Particle acceleration at astrophysical shocks: A theory of cosmic ray origin,” Physics Reports 154, 1–75 (1987).2Blasi, P., “The origin of galactic cosmic rays,” The Astronomy and Astrophysics Review 21, 1–73 (2013).3Carslaw, K., Harrison, R., and Kirkby, J., “Cosmic rays, clouds, and climate,” science 298, 1732–1737 (2002).Chu, W. and Qin, G., “The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions,” in Annales Geophysicae, Vol. 34 (Copernicus Publications Göttingen, Germany, 2016) pp. 45–53.Danilova, O., Ptitsyna, N., Tyasto, M., and Sdobnov, V., “The relationship of magnetospheric parameters with cosmic-ray cutoff rigidities depending on latitude,” Cosmic Research 61, 18–26 (2023).Gao, Z.-K., Small, M., and Kurths, J., “Complex network analysis of time series,” Europhysics Letters 116, 50001 (2017).Gleeson, L. and Axford, W., “Solar modulation of galactic cosmic rays,” Astrophysical Journal, vol. 154, p. 1011 154, 1011 (1968).8Goldstein, M. L., Morris, S. A., and Yen, G. G., “Problems with fitting to the power-law distribution,” The European Physical Journal B-Condensed Matter and Complex Systems 41, 255–258 (2004)9Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H. E., “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A: Statistical Mechanics and its Applications 316, 87–114 (2002)0Kirkby, J., “Cosmic rays and climate,” Surveys in Geophysics 28, 333–375 (2007).1Lacasa, L. and Toral, R., “Description of stochastic and chaotic series using visibility graphs,” Physical Review E 82, 036120 (2010).Luque, B., Lacasa, L., Ballesteros, F., and Luque, J., “Horizontal visibility graphs: Exact results for random time series,” Physical Review E 80, 046103 (2009).Mishev, A. and Usoskin, I., “Current status and possible extension of the global neutron monitor network,” Journal of Space Weather and Space Climate 10, 17 (2020).Moraal, H., Belov, A., and Clem, J., “Design and co-ordination of multistation international neutron monitor networks,” Space Science Reviews 93, 285–303 (2000)5Potgieter, M. S., “Solar modulation of cosmic rays,” Living Reviews in Solar Physics 10, 1–66 (2013).Sierra-Porta, D., “Cross correlation and time-lag between cosmic ray intensity and solar activity during solar cycles 21, 22 and 23,” Astrophysics and Space Science 363, 1–5 (2018).7Sierra-Porta, D., “On the fractal properties of cosmic rays and sun dynamics cross-correlations,” Astrophysics and Space Science 367, 1–14 (2022).Sierra-Porta, D. and Domínguez-Monterroza, A.-R., “Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis,” Physica A: Statistical Mechanics and its Applications 607, 128159 (2022).9Small, M., Walker, D. M., and Tse, C. K., “Scale-free distribution of avian influenza outbreaks,” Physical review letters 99, 188702 (2007).0Stanev, T., High energy cosmic rays (Springer Science & Business Media, 2010).Stephen, M., Gu, C., and Yang, H., “Visibility graph based time series analysis,” PloS one 10, e0143015 (2015)2Usoskin, I. G. and Kovaltsov, G. A., “Cosmic rays and climate of the earth: Possible connection,” Comptes Rendus Geoscience 340, 441–450 (2008).Zou, Y., Donner, R. V., Marwan, N., Donges, J. F., and Kurths, J., “Complex network approaches to nonlinear time series analysis,” Physics Reports 787, 1–97 (2019).http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALVisibility_GCR_2023_AIP (2).pdfVisibility_GCR_2023_AIP (2).pdfapplication/pdf428495https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/1/Visibility_GCR_2023_AIP%20%282%29.pdfdf200c5d95d5cc7cc0439d69b4893af5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTVisibility_GCR_2023_AIP (2).pdf.txtVisibility_GCR_2023_AIP (2).pdf.txtExtracted texttext/plain38744https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/3/Visibility_GCR_2023_AIP%20%282%29.pdf.txt35b614351ac1ecc97804d35efd82a2f3MD53THUMBNAILVisibility_GCR_2023_AIP (2).pdf.jpgVisibility_GCR_2023_AIP (2).pdf.jpgGenerated Thumbnailimage/jpeg9802https://repositorio.utb.edu.co/bitstream/20.500.12585/12645/4/Visibility_GCR_2023_AIP%20%282%29.pdf.jpg6ed2edf2a6497f67681448a2f3e7c468MD5420.500.12585/12645oai:repositorio.utb.edu.co:20.500.12585/126452024-03-05 00:16:52.242Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |