Modeling of dynamic mass coupled system with Runge-Kutta fourth order

This paper shows the mathematical modeling process of a mechanical system of masses coupled by two springs and a shock absorber. The process of capture of movement of the mass system coupled with springs was done with software Tracker video analysis and modeling tool. The motion capture of the coupl...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8726
Acceso en línea:
https://hdl.handle.net/20.500.12585/8726
Palabra clave:
Initial value problems
MATLAB
Numerical methods
Shock absorbers
Coupled systems
Mass-spring models
Matlab- software
Mechanical systems
Modeling of dynamics
Motion capture
Numerical solution
Precision model
Runge Kutta methods
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_3b5945a5cde7bab8330086ee7477805e
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8726
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Modeling of dynamic mass coupled system with Runge-Kutta fourth order
title Modeling of dynamic mass coupled system with Runge-Kutta fourth order
spellingShingle Modeling of dynamic mass coupled system with Runge-Kutta fourth order
Initial value problems
MATLAB
Numerical methods
Shock absorbers
Coupled systems
Mass-spring models
Matlab- software
Mechanical systems
Modeling of dynamics
Motion capture
Numerical solution
Precision model
Runge Kutta methods
title_short Modeling of dynamic mass coupled system with Runge-Kutta fourth order
title_full Modeling of dynamic mass coupled system with Runge-Kutta fourth order
title_fullStr Modeling of dynamic mass coupled system with Runge-Kutta fourth order
title_full_unstemmed Modeling of dynamic mass coupled system with Runge-Kutta fourth order
title_sort Modeling of dynamic mass coupled system with Runge-Kutta fourth order
dc.contributor.editor.none.fl_str_mv Castro Suarez J.R.
dc.subject.keywords.none.fl_str_mv Initial value problems
MATLAB
Numerical methods
Shock absorbers
Coupled systems
Mass-spring models
Matlab- software
Mechanical systems
Modeling of dynamics
Motion capture
Numerical solution
Precision model
Runge Kutta methods
topic Initial value problems
MATLAB
Numerical methods
Shock absorbers
Coupled systems
Mass-spring models
Matlab- software
Mechanical systems
Modeling of dynamics
Motion capture
Numerical solution
Precision model
Runge Kutta methods
description This paper shows the mathematical modeling process of a mechanical system of masses coupled by two springs and a shock absorber. The process of capture of movement of the mass system coupled with springs was done with software Tracker video analysis and modeling tool. The motion capture of the coupled masses A and B was made with a duration of 20 seconds. A comparison of the results of the movement of the two masses will be established as a first instance, by adjusting trajectories of curves in time using Matlab software and as a second instance a numerical solution of the Mass-Spring model will be established using the Runge Kutta method of 4 order. With this last method, it is expected to achieve a better precision modeling of the initial value problem. Finally, a comparison of the two mathematical models will be made analyzing. © Published under licence by IOP Publishing Ltd.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:11Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:11Z
dc.date.issued.none.fl_str_mv 2019
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Conferencia
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IOP Conference Series: Materials Science and Engineering; Vol. 519, Núm. 1
dc.identifier.issn.none.fl_str_mv 1757-8981
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8726
dc.identifier.doi.none.fl_str_mv 10.1088/1757-899X/519/1/012009
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv IOP Conference Series: Materials Science and Engineering; Vol. 519, Núm. 1
1757-8981
10.1088/1757-899X/519/1/012009
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8726
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Physics Publishing
publisher.none.fl_str_mv Institute of Physics Publishing
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85067041904&doi=10.1088%2f1757-899X%2f519%2f1%2f012009&partnerID=40&md5=b80cbcc8f2fd0e39a7a6351150bc65af
Scopus 57204839037
Scopus 57209255267
Scopus 57209242220
Scopus 17233930700
Scopus 57190688459
institution Universidad Tecnológica de Bolívar
dc.source.event.none.fl_str_mv Expotecnologia 2018: Research, Innovation and Development in Engineering, 31 October 2018 through 2 November 2018
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8726/1/DOI10_10881757-899X5191012009.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8726/4/DOI10_10881757-899X5191012009.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8726/5/DOI10_10881757-899X5191012009.pdf.jpg
bitstream.checksum.fl_str_mv 0f9e4b1a584c516ce9af2790e91de222
b09739362d4cfb8e0aa5efd140d2bfbe
1fb6f1445e8014e408174a7639c11c5d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021676420038656
spelling Castro Suarez J.R.Rojas, L.Molina-Cardenas, M.Caballero, E.Rojas, C.Patiño Vanegas, Alberto2019-11-06T19:05:11Z2019-11-06T19:05:11Z2019IOP Conference Series: Materials Science and Engineering; Vol. 519, Núm. 11757-8981https://hdl.handle.net/20.500.12585/872610.1088/1757-899X/519/1/012009Universidad Tecnológica de BolívarRepositorio UTBThis paper shows the mathematical modeling process of a mechanical system of masses coupled by two springs and a shock absorber. The process of capture of movement of the mass system coupled with springs was done with software Tracker video analysis and modeling tool. The motion capture of the coupled masses A and B was made with a duration of 20 seconds. A comparison of the results of the movement of the two masses will be established as a first instance, by adjusting trajectories of curves in time using Matlab software and as a second instance a numerical solution of the Mass-Spring model will be established using the Runge Kutta method of 4 order. With this last method, it is expected to achieve a better precision modeling of the initial value problem. Finally, a comparison of the two mathematical models will be made analyzing. © Published under licence by IOP Publishing Ltd.Bolivar si Innova;CAMACOL Bolivar;Consejo Profesional Nacional de Ingenieria (COPNIA);Establecimiento Publico Ambiental (EPA);et al.;Renata ColombiaRecurso electrónicoapplication/pdfengInstitute of Physics Publishinghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-85067041904&doi=10.1088%2f1757-899X%2f519%2f1%2f012009&partnerID=40&md5=b80cbcc8f2fd0e39a7a6351150bc65afScopus 57204839037Scopus 57209255267Scopus 57209242220Scopus 17233930700Scopus 57190688459Expotecnologia 2018: Research, Innovation and Development in Engineering, 31 October 2018 through 2 November 2018Modeling of dynamic mass coupled system with Runge-Kutta fourth orderinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionConferenciahttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_c94fInitial value problemsMATLABNumerical methodsShock absorbersCoupled systemsMass-spring modelsMatlab- softwareMechanical systemsModeling of dynamicsMotion captureNumerical solutionPrecision modelRunge Kutta methodsQi, C., Zhao, X., Gao, F., Li, H., Modeling and identification of nonlinear distributed parameter dynamics of the micro-cantilever (2014) Proceedings of the 33rd Chinese Control Conference, pp. 5924-5929Chen, Z., Qi, Q., Zhou, Y., Mathematical Model and Simulation for Motion of Underwater Vehicle 2013 (2013) Sixth International Symposium on Computational Intelligence and Design, pp. 293-296Wang, D., Turitsyn, K., Chertkov, M., DistFlow ODE: Modeling, analyzing and controlling long distribution feeder (2012) IEEE 51st IEEE Conference on Decision and Control (CDC), pp. 5613-5618Rath, G., Harker, M., Zaev, E., Direct numerical solution of stiff ODE systems in optimal control (2017) 6th Mediterranean Conference on Embedded Computing (MECO), pp. 1-5Lobão, W., Dias, D., Pacheco, M., Genetic programming and automatic differentiation algorithms applied to the solution of ordinary and partial differential equations (2016) IEEE Congress on Evolutionary Computation (CEC), pp. 5286-5292Korolova, O., Popp, M., Mathis, W., Ponick, B., Performance of Runge-Kutta family numerical solvers for calculation of transient processes in AC machines (2017) 20th International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6Krysko, V., Saltykova, O., Krysko, A., Papkova, I., Nonlinear dynamics of contact interaction of MEMS beam elements accounting the Euler-Bernoulli hypothesis in a temperature field (2017) Dynamics of Systems, Mechanisms and Machines (Dynamics), pp. 1-6Kern, R., Gehring, N., Tracking control for a long pneumatic transmission line (2017) 22nd International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 180-185Guangyao, L., Yugang, D., Chengning, Z., Liwen, P., Numerical simulation and analysis of contact thermal resistance on motor controller based on Matlab (2014) IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC As/a-Pacific), pp. 1-4Swetha, G., Priya, M., Gupta, R., Pandey, A., Implementation of chaotic oscillator using Matlab (2017) International Conference on Recent Innovations in Signal Processing and Embedded Systems (RISE), pp. 97-101Nenov, H., Dimitrov, B., Marinov, A., Algorithms for computational procedure acceleration for systems differential equations in matlab (2013) 36th International Convention on Information and Commumcation Technology, Electromcs and Microelectromcs (MIPRO), pp. 238-242Molina, A., Lazcano, G., Matlab programmed method for the optical flow estimation based on the integral image (2018) 4th International Conference on Control, Automation and Robotics (ICCAR), pp. 394-399Bai, Y., Zhang, M., Visual Teaching of Numerical Analysis Based on MATLAB (2009) First International Conference on Information Science AndEngmeermg, pp. 3552-3555Trimbitas, R., Trimbitas, M., Runge-Kutta Methods and Inverse Hermite Interpolation (2007) Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, pp. 118-123Ghassemi, A., Fazel, S., Maghsoud, I., Farshad, S., Comprehensive study on the power rating of a railway power conditioner using thyristor switched capacitor (2014) IET Electrical Systems in Transportation, 4 (4), pp. 97-106Kavitha, S., Varuna, S., Ramya, R., A comparative analysis on linear regression and support vector regression (2016) Online International Conference on Green Engineering and Technologies (IC-GET), pp. 1-5Hirose, H., Soejima, Y., Hirose, K NNRMLR: A Combined Method of Nearest Neighbor Regression and Multiple Linear Regression (2012) IIAI International Conference on Advanced Applied Informatics, pp. 351-356Feng, X., Zhou, Y., Hua, T., Zou, Y., Xiao, J., Contact temperature prediction of high voltage switchgear based on multiple linear regression model (2017) 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 277-280Kong, W., Zhou, H., Zheng, K., Mu, X., Hong, W., FFT-Based Method with Near-Matrix Compression (2017) IEEE Transactions on Antennas and Propagation, 65 (11), pp. 5975-5983Su, T., Yang, M., Jin, T., Flesch, R., Power harmonic and interharmonic detection method in renewable power based on Nuttall double-window all-phase FFT algorithm (2018) IET Renewable Power Generation, 12 (8), pp. 953-961Laih, C., Harn, L., Lee, J., On the design of a single-key-lock mechanism based on Newton's interpolating polynomial (1989) IEEE Transactions on Software Engineering, 15 (9), pp. 1135-1137Van Beeumen, R., Michiels, W., Meerbergen, K., Linearization of Lagrange and Hermite interpolating matrix polynomials (2015) IMA Journal of Numerical Analysis, 35 (2), pp. 909-930Lian, Y., Juncheng, L., Guohua, C., A Class of Algebraic Trigonometric Interpolation Splines and Applications (2010) International Conference on Computational and Information Sciences, pp. 1174-1177Pattanadech, N., Yutthagowith, P., Fast curve fitting algorithm for parameter evaluation in lightning impulse test technique (2015) IEEE Transactions on Dielectrics and Electrical Insulation, 22 (5), pp. 2931-2936Wang, X., Strong convergence rates of the linear implicit Euler method for the finite element discretization of SPDEs with additive noise (2017) IMA Journal of Numerical Analysis, 37, pp. 965-984Simos, T., A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation (2001) IMA Journal of Numerical Analysis, 21 (4), pp. 919-931Haut, T., Babb, T., Martinsson, P., Wingate, B., A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator (2016) IMA Journal of Numerical Analysis, 36 (2), pp. 688-716Zhou, W., Bovik, A., Mean squared error: Love it or leave it? A new look at signal fidelity measures (2009) IEEE Signal Processing Magazine, 26 (1), pp. 98-117Zhu, L., Rivera, L., A note on the dynamic and static displacements from a point source in multilayered media (2002) Geophysical Journal International, 148 (3), pp. 619-627Szyld, D., Xue, F., Several properties of invariant pairs of nonlinear algebraic eigenvalue problems (2014) IMA Journal of Numerical Analysis, 34 (3), pp. 921-954Yoshida, H., Tanaka, T., Positive Controllability Test for Continuous-Time Linear Systems (2007) IEEE Transactions on Automatic Control, 52 (9), pp. 1685-1689Pattanadech, N., Yutthagowith, P., Fast curve fitting algorithm for parameter evaluation in lightning impulse test technique (2015) IEEE Transactions on Dielectrics and Electrical Insulation, 22 (5), pp. 2931-2936Bakhshizadeh, M., The Application of Vector Fitting to Eigenvalue-Based Harmonic Stability Analysis (2017) IEEE Journal of Emerging and Selected Topics in Power Electronics, 5 (4), pp. 41487-41498Ding, T., Li, C., Huang, C., Yang, Y., Li, F., Blaabjerg, F., A Hierarchical Modeling for Reactive Power Optimization with Joint Transmission and Distribution Networks by Curve Fitting (2018) IEEE Systems Journal, 12 (3), pp. 2739-2748Batzelis, E., Kampitsis, G., Papathanassiou, S., Power Reserves Control for PV Systems with Real-Time MPP Estimation via Curve Fitting (2017) IEEE Transactions on Sustainable Energy, 8 (3), pp. 1269-1280Haut, T., Babb, T., Martinsson, P., Wingate, B., A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator (2016) IMA Journal of Numerical Analysis, 36 (2), pp. 688-716Nicolet, A., Delince, F., Implicit Runge-Kutta methods for transient magnetic field computation (1996) IEEE Transactions on Magnetics, 32 (3), pp. 1405-1408Darkner, S., Pai, A., Liptrot, M., Sporring, J., Collocation for Diffeomorphic Deformations in Medical Image Registration (2018) IEEE Transactions on Pattern Analysis and Machine Intelligence, 40 (7), pp. 1570-1583Abdelgawad, H., Sood, V., Performance analysis of boost converter by using different integration algorithms (2016) IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-5Talbi, S., Kassmi, K., Malek, R., Modeling and simulation of a solar oven box-type with thermal storage (2016) International Renewable and Sustainable Energy Conference (IRSEC), pp. 348-352http://purl.org/coar/resource_type/c_c94fORIGINALDOI10_10881757-899X5191012009.pdfapplication/pdf1599905https://repositorio.utb.edu.co/bitstream/20.500.12585/8726/1/DOI10_10881757-899X5191012009.pdf0f9e4b1a584c516ce9af2790e91de222MD51TEXTDOI10_10881757-899X5191012009.pdf.txtDOI10_10881757-899X5191012009.pdf.txtExtracted texttext/plain37000https://repositorio.utb.edu.co/bitstream/20.500.12585/8726/4/DOI10_10881757-899X5191012009.pdf.txtb09739362d4cfb8e0aa5efd140d2bfbeMD54THUMBNAILDOI10_10881757-899X5191012009.pdf.jpgDOI10_10881757-899X5191012009.pdf.jpgGenerated Thumbnailimage/jpeg28574https://repositorio.utb.edu.co/bitstream/20.500.12585/8726/5/DOI10_10881757-899X5191012009.pdf.jpg1fb6f1445e8014e408174a7639c11c5dMD5520.500.12585/8726oai:repositorio.utb.edu.co:20.500.12585/87262023-05-25 10:01:20.776Repositorio Institucional UTBrepositorioutb@utb.edu.co