Two-dimensional Einstein manifolds in geometrothermodynamics
We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessi...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8762
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8762
- Palabra clave:
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_3afd122b6b6f433a8b2bc54eac71ebf6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8762 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
spelling |
2019-11-06T19:05:20Z2019-11-06T19:05:20Z2013Advances in High Energy Physics; Vol. 20131687-7357https://hdl.handle.net/20.500.12585/876210.1155/2013/967618Universidad Tecnológica de BolívarRepositorio UTBWe present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessian curvature we write down the systems of partial differential equations. In such a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives of the isothermal coordinates. We conjecture that solutions on the characteristic circumference are of physical relevance, separating them from those of pure mathematical interest. We present the case of a one-parameter family of fundamental relations that - when lying in the circumference - describe a polytropic fluid. © 2013 Antonio C. Gutiérrez-Piñeres et al.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84880870226&doi=10.1155%2f2013%2f967618&partnerID=40&md5=a19a44e3d53080317b51d76e69c7a9a7Scopus 25225467000Scopus 56013682900Scopus 56013704300Two-dimensional Einstein manifolds in geometrothermodynamicsinfo:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionArtículo de revisiónhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_efa0Gutiérrez-Piñeres A.C.López-Monsalvo, C.S.Nettel, F.Quevedo, H., Geometrothermodynamics (2007) Journal of Mathematical Physics, 48 (1). , 10.1063/1.2409524 MR2292621 ZBL1121.80011 13506Ruppeiner, G., Thermodynamics: A Riemannian geometric model (1979) Physical Review A, 20 (4), pp. 1608-1613. , 2-s2.0-33646974817 10.1103/PhysRevA.20.1608Weinhold, F., Metric geometry of equilibrium thermodynamics (1975) The Journal of Chemical Physics, 63 (6), pp. 2479-2483. , MR0378597 10.1063/1.431689Bravetti, A., Lopez-Monsalvo, C.S., Nettel, F., Quevedo, H., The conformal metric structure of geometrothermodynamics (2013) Journal of Mathematical Physics, 54, p. 11. , 033513 10.1063/1.4795136Quevedo, H., Nettel, F., Lopez-Monsalvo, C.S., Bravetti, A., Representation Invariant Geometrothermodynamics: Applications to Ordinary Thermodynamic Systems, , http://arxiv.org/abs/1303.1428Bravetti, A., Momeni, D., Myrzakulov, R., Quevedo, H., Geometrothermodynamics of higher dimensional black holes (2013) General Relativity and Gravitation, , 10.1007/s10714-013-1549-2Aviles, A., Basterrechea-Almodovar, A., Campuzano, L., Quevedo, H., Extending the generalized Chaplygin gas model by using geometrothermodynamics (2012) Physical Review D, 86. , 063508http://purl.org/coar/resource_type/c_dcae04bcORIGINALDOI10_11552013967618.pdfapplication/pdf1416460https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/1/DOI10_11552013967618.pdf7304382f48e3f4cd12bf7eddf3d5dc52MD51TEXTDOI10_11552013967618.pdf.txtDOI10_11552013967618.pdf.txtExtracted texttext/plain25908https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/4/DOI10_11552013967618.pdf.txt9ab852a0696f049290ec89568d77d396MD54THUMBNAILDOI10_11552013967618.pdf.jpgDOI10_11552013967618.pdf.jpgGenerated Thumbnailimage/jpeg94840https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/5/DOI10_11552013967618.pdf.jpg77f6e79847ae2af74e9ea901777fa974MD5520.500.12585/8762oai:repositorio.utb.edu.co:20.500.12585/87622023-05-26 11:44:01.778Repositorio Institucional UTBrepositorioutb@utb.edu.co |
dc.title.none.fl_str_mv |
Two-dimensional Einstein manifolds in geometrothermodynamics |
title |
Two-dimensional Einstein manifolds in geometrothermodynamics |
spellingShingle |
Two-dimensional Einstein manifolds in geometrothermodynamics |
title_short |
Two-dimensional Einstein manifolds in geometrothermodynamics |
title_full |
Two-dimensional Einstein manifolds in geometrothermodynamics |
title_fullStr |
Two-dimensional Einstein manifolds in geometrothermodynamics |
title_full_unstemmed |
Two-dimensional Einstein manifolds in geometrothermodynamics |
title_sort |
Two-dimensional Einstein manifolds in geometrothermodynamics |
description |
We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessian curvature we write down the systems of partial differential equations. In such a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives of the isothermal coordinates. We conjecture that solutions on the characteristic circumference are of physical relevance, separating them from those of pure mathematical interest. We present the case of a one-parameter family of fundamental relations that - when lying in the circumference - describe a polytropic fluid. © 2013 Antonio C. Gutiérrez-Piñeres et al. |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T19:05:20Z |
dc.date.available.none.fl_str_mv |
2019-11-06T19:05:20Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_efa0 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/review |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo de revisión |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Advances in High Energy Physics; Vol. 2013 |
dc.identifier.issn.none.fl_str_mv |
1687-7357 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8762 |
dc.identifier.doi.none.fl_str_mv |
10.1155/2013/967618 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
identifier_str_mv |
Advances in High Energy Physics; Vol. 2013 1687-7357 10.1155/2013/967618 Universidad Tecnológica de Bolívar Repositorio UTB |
url |
https://hdl.handle.net/20.500.12585/8762 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84880870226&doi=10.1155%2f2013%2f967618&partnerID=40&md5=a19a44e3d53080317b51d76e69c7a9a7 Scopus 25225467000 Scopus 56013682900 Scopus 56013704300 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/1/DOI10_11552013967618.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/4/DOI10_11552013967618.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/5/DOI10_11552013967618.pdf.jpg |
bitstream.checksum.fl_str_mv |
7304382f48e3f4cd12bf7eddf3d5dc52 9ab852a0696f049290ec89568d77d396 77f6e79847ae2af74e9ea901777fa974 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021724592668672 |