Two-dimensional Einstein manifolds in geometrothermodynamics

We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/8762
Acceso en línea:
https://hdl.handle.net/20.500.12585/8762
Palabra clave:
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_3afd122b6b6f433a8b2bc54eac71ebf6
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/8762
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
spelling 2019-11-06T19:05:20Z2019-11-06T19:05:20Z2013Advances in High Energy Physics; Vol. 20131687-7357https://hdl.handle.net/20.500.12585/876210.1155/2013/967618Universidad Tecnológica de BolívarRepositorio UTBWe present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessian curvature we write down the systems of partial differential equations. In such a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives of the isothermal coordinates. We conjecture that solutions on the characteristic circumference are of physical relevance, separating them from those of pure mathematical interest. We present the case of a one-parameter family of fundamental relations that - when lying in the circumference - describe a polytropic fluid. © 2013 Antonio C. Gutiérrez-Piñeres et al.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84880870226&doi=10.1155%2f2013%2f967618&partnerID=40&md5=a19a44e3d53080317b51d76e69c7a9a7Scopus 25225467000Scopus 56013682900Scopus 56013704300Two-dimensional Einstein manifolds in geometrothermodynamicsinfo:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionArtículo de revisiónhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_efa0Gutiérrez-Piñeres A.C.López-Monsalvo, C.S.Nettel, F.Quevedo, H., Geometrothermodynamics (2007) Journal of Mathematical Physics, 48 (1). , 10.1063/1.2409524 MR2292621 ZBL1121.80011 13506Ruppeiner, G., Thermodynamics: A Riemannian geometric model (1979) Physical Review A, 20 (4), pp. 1608-1613. , 2-s2.0-33646974817 10.1103/PhysRevA.20.1608Weinhold, F., Metric geometry of equilibrium thermodynamics (1975) The Journal of Chemical Physics, 63 (6), pp. 2479-2483. , MR0378597 10.1063/1.431689Bravetti, A., Lopez-Monsalvo, C.S., Nettel, F., Quevedo, H., The conformal metric structure of geometrothermodynamics (2013) Journal of Mathematical Physics, 54, p. 11. , 033513 10.1063/1.4795136Quevedo, H., Nettel, F., Lopez-Monsalvo, C.S., Bravetti, A., Representation Invariant Geometrothermodynamics: Applications to Ordinary Thermodynamic Systems, , http://arxiv.org/abs/1303.1428Bravetti, A., Momeni, D., Myrzakulov, R., Quevedo, H., Geometrothermodynamics of higher dimensional black holes (2013) General Relativity and Gravitation, , 10.1007/s10714-013-1549-2Aviles, A., Basterrechea-Almodovar, A., Campuzano, L., Quevedo, H., Extending the generalized Chaplygin gas model by using geometrothermodynamics (2012) Physical Review D, 86. , 063508http://purl.org/coar/resource_type/c_dcae04bcORIGINALDOI10_11552013967618.pdfapplication/pdf1416460https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/1/DOI10_11552013967618.pdf7304382f48e3f4cd12bf7eddf3d5dc52MD51TEXTDOI10_11552013967618.pdf.txtDOI10_11552013967618.pdf.txtExtracted texttext/plain25908https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/4/DOI10_11552013967618.pdf.txt9ab852a0696f049290ec89568d77d396MD54THUMBNAILDOI10_11552013967618.pdf.jpgDOI10_11552013967618.pdf.jpgGenerated Thumbnailimage/jpeg94840https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/5/DOI10_11552013967618.pdf.jpg77f6e79847ae2af74e9ea901777fa974MD5520.500.12585/8762oai:repositorio.utb.edu.co:20.500.12585/87622023-05-26 11:44:01.778Repositorio Institucional UTBrepositorioutb@utb.edu.co
dc.title.none.fl_str_mv Two-dimensional Einstein manifolds in geometrothermodynamics
title Two-dimensional Einstein manifolds in geometrothermodynamics
spellingShingle Two-dimensional Einstein manifolds in geometrothermodynamics
title_short Two-dimensional Einstein manifolds in geometrothermodynamics
title_full Two-dimensional Einstein manifolds in geometrothermodynamics
title_fullStr Two-dimensional Einstein manifolds in geometrothermodynamics
title_full_unstemmed Two-dimensional Einstein manifolds in geometrothermodynamics
title_sort Two-dimensional Einstein manifolds in geometrothermodynamics
description We present a class of thermodynamic systems with constant thermodynamic curvature which, within the context of geometric approaches of thermodynamics, can be interpreted as constant thermodynamic interaction among their components. In particular, for systems constrained by the vanishing of the Hessian curvature we write down the systems of partial differential equations. In such a case it is possible to find a subset of solutions lying on a circumference in an abstract space constructed from the first derivatives of the isothermal coordinates. We conjecture that solutions on the characteristic circumference are of physical relevance, separating them from those of pure mathematical interest. We present the case of a one-parameter family of fundamental relations that - when lying in the circumference - describe a polytropic fluid. © 2013 Antonio C. Gutiérrez-Piñeres et al.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013
dc.date.accessioned.none.fl_str_mv 2019-11-06T19:05:20Z
dc.date.available.none.fl_str_mv 2019-11-06T19:05:20Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_efa0
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/review
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo de revisión
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Advances in High Energy Physics; Vol. 2013
dc.identifier.issn.none.fl_str_mv 1687-7357
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/8762
dc.identifier.doi.none.fl_str_mv 10.1155/2013/967618
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
identifier_str_mv Advances in High Energy Physics; Vol. 2013
1687-7357
10.1155/2013/967618
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/8762
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv https://www2.scopus.com/inward/record.uri?eid=2-s2.0-84880870226&doi=10.1155%2f2013%2f967618&partnerID=40&md5=a19a44e3d53080317b51d76e69c7a9a7
Scopus 25225467000
Scopus 56013682900
Scopus 56013704300
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/1/DOI10_11552013967618.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/4/DOI10_11552013967618.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/8762/5/DOI10_11552013967618.pdf.jpg
bitstream.checksum.fl_str_mv 7304382f48e3f4cd12bf7eddf3d5dc52
9ab852a0696f049290ec89568d77d396
77f6e79847ae2af74e9ea901777fa974
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021724592668672