Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach
This paper proposes a direct power control (DPC) for a high-voltage direct-current system using voltage source converters (VSC-HVDC) by applying passivity-based control theory. This system allows doing an efficient and reliable integration of electrical network from renewable energy sources. The DPC...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9061
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9061
- Palabra clave:
- Direct power control
Passivity theory
Proportional-integral passivity-based control
Voltage source converter high voltage direct current
Control theory
Controllers
Hamiltonians
HVDC power transmission
Investments
MATLAB
Renewable energy resources
Two term control systems
Active and Reactive Power
Direct power control
High voltage direct current
High voltage direct current systems
Passivity based control
Passivity theory
Power systems application
Voltage source converters
Power control
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_3a856f574df76600e2437e57876049ac |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9061 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach |
title |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach |
spellingShingle |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach Direct power control Passivity theory Proportional-integral passivity-based control Voltage source converter high voltage direct current Control theory Controllers Hamiltonians HVDC power transmission Investments MATLAB Renewable energy resources Two term control systems Active and Reactive Power Direct power control High voltage direct current High voltage direct current systems Passivity based control Passivity theory Power systems application Voltage source converters Power control |
title_short |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach |
title_full |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach |
title_fullStr |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach |
title_full_unstemmed |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach |
title_sort |
Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approach |
dc.subject.keywords.none.fl_str_mv |
Direct power control Passivity theory Proportional-integral passivity-based control Voltage source converter high voltage direct current Control theory Controllers Hamiltonians HVDC power transmission Investments MATLAB Renewable energy resources Two term control systems Active and Reactive Power Direct power control High voltage direct current High voltage direct current systems Passivity based control Passivity theory Power systems application Voltage source converters Power control |
topic |
Direct power control Passivity theory Proportional-integral passivity-based control Voltage source converter high voltage direct current Control theory Controllers Hamiltonians HVDC power transmission Investments MATLAB Renewable energy resources Two term control systems Active and Reactive Power Direct power control High voltage direct current High voltage direct current systems Passivity based control Passivity theory Power systems application Voltage source converters Power control |
description |
This paper proposes a direct power control (DPC) for a high-voltage direct-current system using voltage source converters (VSC-HVDC) by applying passivity-based control theory. This system allows doing an efficient and reliable integration of electrical network from renewable energy sources. The DPC model permits instantaneous control of the active and reactive power without employing the conventional inner-loop current regulator and the phase-locked loop, thus diminishing investment costs and increasing the reliability of the system. The proportional-integral passivity-based control (PI-PBC) is chosen to control the direct power model of the VSC-HVDC system since this system exhibits a port-Hamiltonian formulation in open-loop and as PI-PBC can exploit this formulation to design a PI controller, which guarantees asymptotically stable in closed-loop based on Lyapunov's theory. Passivity-based control is an active research subject in the control community which has gained a reputation of being a very theoretical subject. Nevertheless, it can have advantages from a practical point of view including an implementation similar to the conventional controls for power systems applications. The paper is oriented to the power & energy systems community, taking into account this practical approach. The proposed controller is assessed by simulations in a two-terminal VSC-HVDC system and compared with a PI direct power controller. Four simulation conditions using MATLAB/SIMULINK were conducted to verify the effectiveness of PI-PBC against a PI controller and a perturbation observer-based adaptive passive control under various operating conditions. © 2019 Elsevier Ltd |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:52Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:52Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
International Journal of Electrical Power and Energy Systems; Vol. 110, pp. 588-597 |
dc.identifier.issn.none.fl_str_mv |
01420615 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9061 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.ijepes.2019.03.042 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57191493648 56919564100 36449223500 |
identifier_str_mv |
International Journal of Electrical Power and Energy Systems; Vol. 110, pp. 588-597 01420615 10.1016/j.ijepes.2019.03.042 Universidad Tecnológica de Bolívar Repositorio UTB 57191493648 56919564100 36449223500 |
url |
https://hdl.handle.net/20.500.12585/9061 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85063466178&doi=10.1016%2fj.ijepes.2019.03.042&partnerID=40&md5=cb941b1ed232743a98282680b044e7f8 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9061/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021636016308224 |
spelling |
2020-03-26T16:32:52Z2020-03-26T16:32:52Z2019International Journal of Electrical Power and Energy Systems; Vol. 110, pp. 588-59701420615https://hdl.handle.net/20.500.12585/906110.1016/j.ijepes.2019.03.042Universidad Tecnológica de BolívarRepositorio UTB571914936485691956410036449223500This paper proposes a direct power control (DPC) for a high-voltage direct-current system using voltage source converters (VSC-HVDC) by applying passivity-based control theory. This system allows doing an efficient and reliable integration of electrical network from renewable energy sources. The DPC model permits instantaneous control of the active and reactive power without employing the conventional inner-loop current regulator and the phase-locked loop, thus diminishing investment costs and increasing the reliability of the system. The proportional-integral passivity-based control (PI-PBC) is chosen to control the direct power model of the VSC-HVDC system since this system exhibits a port-Hamiltonian formulation in open-loop and as PI-PBC can exploit this formulation to design a PI controller, which guarantees asymptotically stable in closed-loop based on Lyapunov's theory. Passivity-based control is an active research subject in the control community which has gained a reputation of being a very theoretical subject. Nevertheless, it can have advantages from a practical point of view including an implementation similar to the conventional controls for power systems applications. The paper is oriented to the power & energy systems community, taking into account this practical approach. The proposed controller is assessed by simulations in a two-terminal VSC-HVDC system and compared with a PI direct power controller. Four simulation conditions using MATLAB/SIMULINK were conducted to verify the effectiveness of PI-PBC against a PI controller and a perturbation observer-based adaptive passive control under various operating conditions. © 2019 Elsevier LtdRecurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85063466178&doi=10.1016%2fj.ijepes.2019.03.042&partnerID=40&md5=cb941b1ed232743a98282680b044e7f8Direct power control for VSC-HVDC systems: An application of the global tracking passivity-based PI approachinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Direct power controlPassivity theoryProportional-integral passivity-based controlVoltage source converter high voltage direct currentControl theoryControllersHamiltoniansHVDC power transmissionInvestmentsMATLABRenewable energy resourcesTwo term control systemsActive and Reactive PowerDirect power controlHigh voltage direct currentHigh voltage direct current systemsPassivity based controlPassivity theoryPower systems applicationVoltage source convertersPower controlGil-González W.Montoya O.D.Garces A.Beerten, J., Cole, S., Belmans, R., Modeling of multi-terminal VSC-HVDC systems with distributed DC voltage control (2014) IEEE Trans Power Syst, 29 (1), pp. 34-42Zheng, H., Jiang, D., Xu, F., Yiqiao, L., Optimum configuration for AC/DC converters of DC distribution network (2015) Int Trans Electr Energy Syst, 25 (10), pp. 2058-2070Liao, S., Yao, W., Han, X., Wen, J., Cheng, S., Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data (2017) Appl Energy, 203, pp. 816-828Haruni, A.O., Negnevitsky, M., Haque, M.E., Gargoom, A., A novel operation and control strategy for a standalone hybrid renewable power system (2013) IEEE Trans Sustain Energy, 4 (2), pp. 402-413Yang, B., Jiang, L., Yu, T., Shu, H., Zhang, C.-K., Yao, W., Passive control design for multi-terminal VSC-HVDC systems via energy shaping (2018) Int J Electr Power Energy Syst, 98, pp. 496-508Wang, G., Ciobotaru, M., Agelidis, V.G., Power smoothing of large solar PV plant using hybrid energy storage (2014) IEEE Trans Sustain Energy, 5 (3), pp. 834-842Yang, W., Zhang, A., Li, J., Li, G., Zhang, H., Wang, J., Integral plus resonant sliding mode direct power control for VSC-HVDC systems under unbalanced grid voltage conditions (2017) Energies, 10 (10), p. 1528Li, S., Haskew, T.A., Xu, L., Control of HVDC light system using conventional and direct current vector control approaches (2010) IEEE Trans Power Electron, 25 (12), pp. 3106-3118Giddani, O., Abbas, A.Y., Adam, G.P., Anaya-Lara, O., Lo, K.L., Multi-task control for VSC-HVDC power and frequency control (2013) Int J Electr Power Energy Syst, 53, pp. 684-690Meah, K., Ula, A.S., A new simplified adaptive control scheme for multi-terminal HVDC transmission systems (2010) Int J Electr Power Energy Syst, 32 (4), pp. 243-253Fuchs, A., Imhof, M., Demiray, T., Morari, M., Stabilization of large power systems using VSC-HVDC and model predictive control (2014) IEEE Trans Power Del, 29 (1), pp. 480-488Ruan, S.-Y., Li, G.-J., Peng, L., Sun, Y.-Z., Lie, T., A nonlinear control for enhancing HVDC light transmission system stability (2007) Int J Electr Power Energy Syst, 29 (7), pp. 565-570Ramadan, H.S., Siguerdidjane, H., Petit, M., Kaczmarek, R., Performance enhancement and robustness assessment of VSC-HVDC transmission systems controllers under uncertainties (2012) Int J Electr Power Energy Syst, 35 (1), pp. 34-46Moharana, A., Dash, P., Input-output linearization and robust sliding-mode controller for the VSC-HVDC transmission link (2010) IEEE Trans Power Del, 25 (3), pp. 1952-1961Schmuck, C., Woittennek, F., Gensior, A., Rudolph, J., Feed-forward control of an HVDC power transmission network (2014) IEEE Trans Control Syst Technol, 22 (2), pp. 597-606Yang, B., Sang, Y., Shi, K., Yao, W., Jiang, L., Yu, T., Design and real-time implementation of perturbation observer based sliding-mode control for VSC-HVDC systems (2016) Control Eng Pract, 56, pp. 13-26Zhang, L., Harnefors, L., Nee, H.-P., Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control (2011) IEEE Trans Power Syst, 26 (1), pp. 344-355Beccuti, G., Papafotiou, G., Harnefors, L., Multivariable optimal control of HVDC transmission links with network parameter estimation for weak grids (2014) IEEE Trans Control Syst Technol, 22 (2), pp. 676-689Leon, A.E., Mauricio, J.M., Solsona, J.A., Gomez-Exposito, A., Adaptive control strategy for VSC-based systems under unbalanced network conditions (2010) IEEE Trans Smart Grid, 1 (3), pp. 311-319Dong, D., Wen, B., Boroyevich, D., Mattavelli, P., Xue, Y., Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions (2015) IEEE Trans Ind Electron, 62 (1), pp. 310-321Song, Z., Tian, Y., Yan, Z., Chen, Z., Direct power control for three-phase two-level voltage-source rectifiers based on extended-state observation (2016) IEEE Trans Ind Electron, 63 (7), pp. 4593-4603Gui, Y., Kim, C., Chung, C.C., Guerrero, J.M., Guan, Y., Vasquez, J.C., Improved direct power control for grid-connected voltage source converters (2018) IEEE Trans Ind Electron, 65 (10), pp. 8041-8051Yang, B., Jiang, L., Yao, W., Wu, Q., Perturbation observer based adaptive passive control for damping improvement of multi-terminal voltage source converter-based high voltage direct current systems (2017) Trans Inst Meas Control, 39 (9), pp. 1409-1420Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G., Molinas, M., Global tracking passivity-based pi control of bilinear systems: application to the interleaved boost and modular multilevel converters (2015) Control Eng Pract, 43, pp. 109-119Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J Energy Storage, 17, pp. 261-271Gil-González, W., Montoya, O.D., Garces, A., Control of a SMES for mitigating subsynchronous oscillations in power systems: a PBC-PI approach (2018) J Energy Storage, 20, pp. 163-172Zonetti, D., Ortega, R., Benchaib, A., A globally asymptotically stable decentralized PI controller for multi-terminal high-voltage DC transmission systems (2014) 2014 European control conference (ECC), pp. 1397-1403. , IEEETrip, S., Persis, C.D., Distributed optimal load frequency control with non-passive dynamics (2018) IEEE Trans Control Netw Syst, 5 (3), pp. 1232-1244Hernandez-Gomez, M., Ortega, R., Lamnabhi-Lagarrigue, F., Escobar, G., Adaptive PI stabilization of switched power converters (2010) IEEE Trans Control Syst Technol, 18 (3), pp. 688-698Zonetti, D., Ortega, R., Benchaib, A., Modeling and control of HVDC transmission systems from theory to practice and back (2015) Control Eng Pract, 45, pp. 133-146Bergna-Diaz, G., Zonetti, D., Sanchez, S., Ortega, R., Tedeschi, E., Pi passivity-based control and performance analysis of mmc multi-terminal hvdc systems (2018) IEEE J Emerg Sel Top Power Electron, p. 1Zonetti, D., Energy-based modelling and control of electric power systems with guaranteed stability properties (2016), [Ph.D. thesis]. Université Paris-SaclayYang, B., Yu, T., Zhang, X., Huang, L., Shu, H., Jiang, L., Interactive teaching-learning optimiser for parameter tuning of VSC-HVDC systems with offshore wind farm integration (2017) IET Gener Transmiss Distrib, 12 (3), pp. 678-687Yang, B., Jiang, L., Wang, L., Yao, W., Wu, Q., Nonlinear maximum power point tracking control and modal analysis of DFIG based wind turbine (2016) Int J Electr Power Energy Syst, 74, pp. 429-436http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9061/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9061oai:repositorio.utb.edu.co:20.500.12585/90612021-02-02 13:59:16.353Repositorio Institucional UTBrepositorioutb@utb.edu.co |