Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem

Considering that fractional correlation function and the fractional power spectral density, for -stationary random signals, form a fractional Fourier transform pair. We present an interpolation formula to estimate a random signal from a temporal random series, based on the fractional sampling theore...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9036
Acceso en línea:
https://hdl.handle.net/20.500.12585/9036
Palabra clave:
Fractional correlation
Fractional power spectrum
Ractional Fourier transform
Sampling theorem
Stochastic processes
Power spectral density
Random processes
Fractional correlation
Fractional Fourier transforms
Fractional power
Fractional power spectral density
Fractional sampling
Interpolation formulas
Sampling theorems
Stationary random signal
Digital signal processing
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_389f58ad427993d8a4c25664e461e2ab
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9036
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
title Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
spellingShingle Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
Fractional correlation
Fractional power spectrum
Ractional Fourier transform
Sampling theorem
Stochastic processes
Power spectral density
Random processes
Fractional correlation
Fractional Fourier transforms
Fractional power
Fractional power spectral density
Fractional sampling
Interpolation formulas
Sampling theorems
Stationary random signal
Digital signal processing
title_short Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
title_full Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
title_fullStr Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
title_full_unstemmed Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
title_sort Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theorem
dc.subject.keywords.none.fl_str_mv Fractional correlation
Fractional power spectrum
Ractional Fourier transform
Sampling theorem
Stochastic processes
Power spectral density
Random processes
Fractional correlation
Fractional Fourier transforms
Fractional power
Fractional power spectral density
Fractional sampling
Interpolation formulas
Sampling theorems
Stationary random signal
Digital signal processing
topic Fractional correlation
Fractional power spectrum
Ractional Fourier transform
Sampling theorem
Stochastic processes
Power spectral density
Random processes
Fractional correlation
Fractional Fourier transforms
Fractional power
Fractional power spectral density
Fractional sampling
Interpolation formulas
Sampling theorems
Stationary random signal
Digital signal processing
description Considering that fractional correlation function and the fractional power spectral density, for -stationary random signals, form a fractional Fourier transform pair. We present an interpolation formula to estimate a random signal from a temporal random series, based on the fractional sampling theorem for -bandlimited random signals. Furthermore, by establishing the relationship between the sampling theorem and the von Neumann ergodic theorem, the estimation of the power spectral density of a random signal from one sample signal becomes a suitable approach. Thus, the validity of the sampling theorem for random signals is closely linked to an ergodic hypothesis in the mean sense. © 2014 IEEE.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:49Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:49Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv IEEE Transactions on Signal Processing; Vol. 62, Núm. 14; pp. 3695-3705
dc.identifier.issn.none.fl_str_mv 1053587X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9036
dc.identifier.doi.none.fl_str_mv 10.1109/TSP.2014.2328977
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 56270896900
8330328300
35094573000
identifier_str_mv IEEE Transactions on Signal Processing; Vol. 62, Núm. 14; pp. 3695-3705
1053587X
10.1109/TSP.2014.2328977
Universidad Tecnológica de Bolívar
Repositorio UTB
56270896900
8330328300
35094573000
url https://hdl.handle.net/20.500.12585/9036
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
publisher.none.fl_str_mv Institute of Electrical and Electronics Engineers Inc.
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84903694215&doi=10.1109%2fTSP.2014.2328977&partnerID=40&md5=0cb6bcebd7e51b7bb66bab03e6173451
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9036/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021805490307072
spelling 2020-03-26T16:32:49Z2020-03-26T16:32:49Z2014IEEE Transactions on Signal Processing; Vol. 62, Núm. 14; pp. 3695-37051053587Xhttps://hdl.handle.net/20.500.12585/903610.1109/TSP.2014.2328977Universidad Tecnológica de BolívarRepositorio UTB56270896900833032830035094573000Considering that fractional correlation function and the fractional power spectral density, for -stationary random signals, form a fractional Fourier transform pair. We present an interpolation formula to estimate a random signal from a temporal random series, based on the fractional sampling theorem for -bandlimited random signals. Furthermore, by establishing the relationship between the sampling theorem and the von Neumann ergodic theorem, the estimation of the power spectral density of a random signal from one sample signal becomes a suitable approach. Thus, the validity of the sampling theorem for random signals is closely linked to an ergodic hypothesis in the mean sense. © 2014 IEEE.Recurso electrónicoapplication/pdfengInstitute of Electrical and Electronics Engineers Inc.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84903694215&doi=10.1109%2fTSP.2014.2328977&partnerID=40&md5=0cb6bcebd7e51b7bb66bab03e6173451Fractional sampling theorem for -bandlimited random signals and its relation to the von neumann ergodic theoreminfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Fractional correlationFractional power spectrumRactional Fourier transformSampling theoremStochastic processesPower spectral densityRandom processesFractional correlationFractional Fourier transformsFractional powerFractional power spectral densityFractional samplingInterpolation formulasSampling theoremsStationary random signalDigital signal processingTorres R.Lizarazo Z.Torres E.Kotel'nikov, V.A., On the transmission capacity of ether and wire in electro-communications (1933) Proc. 1st All-Union Conf. Questions of Commun., pp. 1-19. , Jan. 14Shannon, C.E., A mathematical theory of communication (1948) Bell Syst. Tech. J., 27, pp. 379-423. , 623-656Jerri, A.J., The shannon sampling theorem-Its various extensions and applications: A tutorial review (1977) Proc. IEEE, 65 (11), pp. 1565-1596Xia, X.-G., On bandlimited signals with fractional fourier transform (1996) IEEE Signal Processing Letters, 3 (3), pp. 72-74. , PII S1070990896018366Namias, V., The fractional order Fourier transform and its application to quantum mechanics (1980) J. Inst. Math. Appl., 25, pp. 241-265Almeida, L.B., The fractional Fourier transform and time-frequency representations (1994) IEEE Trans. Signal Process., 42 (11), pp. 3084-3091. , NovLohmann, A.W., Mendlovic, D., Zalevsky, Z., (1998) IV: Fractional Transformations in Optics, Ser. Progress in Optics, 38, pp. 263-342. , E.Wolf, Ed. New York, NY, USA: ElsevierOzaktas, H.M., Zalevsky, Z., Kutay, M.A., (2001) The Fractional Fourier Transform with Applications in Optics and Signal Processing, , Chichester, U.K. WileyPellat-Finet, P., (2009) Optique de Fourier: Théorie Métaxiale et Fractionnaire (In French), , Paris, France: Springer-Verlag ParisAlmeida, L.B., Product and convolution theorems for the fractional Fourier transform (1997) IEEE Signal Processing Letters, 4 (1), pp. 15-17Zayed, A.I., A convolution and product theorem for the fractional Fourier transform (1998) IEEE Signal Processing Letters, 5 (4), pp. 101-103Akay, O., Boudreaux-Bartels, G.F., Fractional convolution and correlation via operator methods and an application to detection of linear FM signals (2001) IEEE Transactions on Signal Processing, 49 (5), pp. 979-993. , DOI 10.1109/78.917802, PII S1053587X01022607Torres, R., Pellat-Finet, P., Torres, Y., Fractional convolution, fractional correlation and their translation invariance properties (2010) Signal Process., 90, pp. 1976-1984. , JunCandan, C., Ozaktas, H.M., Sampling and series expansion theorems for fractional Fourier and other transforms (2003) Signal Process., 83 (11), pp. 2455-2457Zayed, A.I., On the relationship between the Fourier and fractional Fourier transforms (1996) IEEE Signal Processing Letters, 3 (12), pp. 310-311. , PII S1070990896090347Zayed, A.I., Garcia, A.G., New sampling formulae for the fractional Fourier transform,"" (1999) Signal Process., 77 (1), pp. 111-114Torres, R., Pellat-Finet, P., Torres, Y., Sampling theorem for fractional bandlimited signals: A self-contained proof. Application to digital holography (2006) IEEE Signal Processing Letters, 13 (11), pp. 676-679. , DOI 10.1109/LSP.2006.879470Wei, D., Ran, Q., Li, Y., Generalized sampling expansion for bandlimited signals associated with the fractional Fourier transform (2010) IEEE Signal Process. Lett., 17 (6), pp. 595-598Sharma, K., Comments on ""Generalized sampling expansion for bandlimited signals associated with fractional Fourier transform (2011) IEEE Signal Process. Lett., 18 (12), pp. 761-761Bhandari, A., Marziliano, P., Sampling and reconstruction of sparse signals in fractional Fourier domain (2010) IEEE Signal Process. Lett., 17 (3), pp. 221-224Wiener, N., (1964) Extrapolation, Interpolation, and Smoothing of Stationary Time Series: With Engineering Applications, , ser. Technology press books in science and engineering. Cambridge, MA, USA: Technology Press of the Mass. Inst. of TechnolTao, R., Zhang, F., Wang, Y., Fractional power spectrum (2008) IEEE Trans. Signal Process., 56, pp. 4199-4206. , SepTorres, R., Torres, E., Fractional Fourier analysis of random signals and the notion of -stationarity of the Wigner-Ville distribution (2013) IEEE Trans. Signal Process., 61 (6), pp. 1555-1560Wiener, N., Generalized harmonic analysis (1930) Acta Mathematica, 55 (1), pp. 117-258Khintchine, A., Korrelationstheorie der stationären stochastischen prozesse (1934) Mathematische Annalen, 109 (1), pp. 604-615Gardner, W., A sampling theorem for nonstationary random processes (corresp.) (1972) IEEE Trans. Inf. Theory, 18 (6), pp. 808-809Garcia, F.M., Lourtie, I.M., Buescu, J., Nonstationary processes and the sampling theorem (2001) IEEE Signal Process. Lett., 8 (4), pp. 117-119Tao, R., Zhang, F., Wang, Y., Sampling random signals in a fractional Fourier domain (2011) Signal Process., 91 (6), pp. 1394-1400Wei, D., Li, Y., Sampling reconstruction of n-dimensional bandlimited images after multilinear filtering in fractional Fourier domain (2013) Opt. Commun., 295, pp. 26-35Hopf, E., (1937) Ergodentheorie (In German), Ser. Ergebnisse der Mathematik und Ihrer Grenzgebiete 5 Bd., 5 (2). , Berlin, Germany: Julius SpringerWalters, P., Walters, P., (1982) An Introduction to Ergodic Theory, 79. , New York, NY, USA: Springer-VerlagNeumann, J.V., Proof of the quasi-ergodic hypothesis (1932) Proc. Nat. Acad. Sci. USA, 18 (1), p. 70Doob, J., (1990) , Stochastic Processes, Ser., , Wiley Publications in Statistics. New York, NY, USA: WileyBirkhoff, G.D., Proof of the ergodic theorem (1931) Proc. Nat. Acad. Sci. USA, 17 (12), pp. 656-660Krengel, U., Brunel, A., (1985) Ergodic Theorems, Ser. de Gruyter Studies in Mathematics, , Berlin, Germany: W. de GruyterBhandari, A., Zayed, A.I., Shift-invariant and sampling spaces associated with the fractional Fourier transform domain (2012) IEEE Trans. Signal Process., 60 (4), pp. 1627-1637Casinovi, G., Sampling and ergodic theorems for weakly almost periodic signals (2009) IEEE Trans. Inf. Theory, 55 (4), pp. 1883-1897. , AprMcBride, A.C., Kerr, F.H., On namias's fractional Fourier transforms (1987) IMA J. Appl. Math., 39 (2), pp. 159-175Lohmann, A.W., Image rotation, Wigner rotation, and the fractional Fourier transform (1993) J. Opt. Soc. Amer. A, 10, pp. 2181-2186. , OctBoashash, B., (2003) Time Frequency Signal Analysis and Processing, , New York, NY, USA: Elsevier ScienceHlawatsch, F., Matz, G., Time-frequency methods for non-stationary statistical signal processing (2010) Time-Frequency Analysis: Concepts and Methods, pp. 279-320. , http://dx.doi.org/10.1002/9780470611203.ch10, London, U.K.: ISTEhttp://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9036/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9036oai:repositorio.utb.edu.co:20.500.12585/90362021-02-02 14:03:01.856Repositorio Institucional UTBrepositorioutb@utb.edu.co