Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models
This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which i...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9253
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9253
- Palabra clave:
- Artificial neural networks
Battery energy storage system
Economic dispatch problem
Battery storage
Cost reduction
Data storage equipment
Electric batteries
Electric machine theory
Neural networks
Nonlinear programming
Scheduling
Battery energy storage systems
Economic dispatch problems
Operating condition
Operational periods
Photovoltaic sources
Renewable generators
Short term prediction
Voltage dependent load models
Electric load dispatching
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_37b8f25bc259cdd85b660dbb8a17a5f0 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9253 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models |
title |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models |
spellingShingle |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models Artificial neural networks Battery energy storage system Economic dispatch problem Battery storage Cost reduction Data storage equipment Electric batteries Electric machine theory Neural networks Nonlinear programming Scheduling Battery energy storage systems Economic dispatch problems Operating condition Operational periods Photovoltaic sources Renewable generators Short term prediction Voltage dependent load models Electric load dispatching |
title_short |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models |
title_full |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models |
title_fullStr |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models |
title_full_unstemmed |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models |
title_sort |
Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models |
dc.subject.keywords.none.fl_str_mv |
Artificial neural networks Battery energy storage system Economic dispatch problem Battery storage Cost reduction Data storage equipment Electric batteries Electric machine theory Neural networks Nonlinear programming Scheduling Battery energy storage systems Economic dispatch problems Operating condition Operational periods Photovoltaic sources Renewable generators Short term prediction Voltage dependent load models Electric load dispatching |
topic |
Artificial neural networks Battery energy storage system Economic dispatch problem Battery storage Cost reduction Data storage equipment Electric batteries Electric machine theory Neural networks Nonlinear programming Scheduling Battery energy storage systems Economic dispatch problems Operating condition Operational periods Photovoltaic sources Renewable generators Short term prediction Voltage dependent load models Electric load dispatching |
description |
This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used. © 2019 MDPI AG. All rights reserved. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:41:28Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:41:28Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Montoya O.D., Gil-González W., Grisales-Norena L., Orozco-Henao C. y Serra F. (2019) Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models. Energies; Vol. 12, Núm. 23 |
dc.identifier.issn.none.fl_str_mv |
19961073 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9253 |
dc.identifier.doi.none.fl_str_mv |
10.3390/en12234494 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 57191493648 55791991200 55488549400 37104976300 |
identifier_str_mv |
Montoya O.D., Gil-González W., Grisales-Norena L., Orozco-Henao C. y Serra F. (2019) Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models. Energies; Vol. 12, Núm. 23 19961073 10.3390/en12234494 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 57191493648 55791991200 55488549400 37104976300 |
url |
https://hdl.handle.net/20.500.12585/9253 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI AG |
publisher.none.fl_str_mv |
MDPI AG |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076239314&doi=10.3390%2fen12234494&partnerID=40&md5=5aad556cf10a550cccf8bae524f3e92d Scopus2-s2.0-85076239314 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9253/1/doi103390en12234494.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/9253/4/doi103390en12234494.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/9253/5/doi103390en12234494.pdf.jpg |
bitstream.checksum.fl_str_mv |
1a7c85d171b3539e0a66764344b43f4f 19cc0fdf48c5e08fda1c1cb0cb0fa206 6f00e4e9a8a35aeee2c7a4a14f75d6fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021697176600576 |
spelling |
2020-03-26T16:41:28Z2020-03-26T16:41:28Z2019Montoya O.D., Gil-González W., Grisales-Norena L., Orozco-Henao C. y Serra F. (2019) Economic dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load models. Energies; Vol. 12, Núm. 2319961073https://hdl.handle.net/20.500.12585/925310.3390/en12234494Universidad Tecnológica de BolívarRepositorio UTB5691956410057191493648557919912005548854940037104976300This paper addresses the optimal dispatch problem for battery energy storage systems (BESSs) in direct current (DC) mode for an operational period of 24 h. The problem is represented by a nonlinear programming (NLP) model that was formulated using an exponential voltage-dependent load model, which is the main contribution of this paper. An artificial neural network was employed for the short-term prediction of available renewable energy from wind and photovoltaic sources. The NLP model was solved by using the general algebraic modeling system (GAMS) to implement a 30-node test feeder composed of four renewable generators and three batteries. Simulation results demonstrate that the cost reduction for a daily operation is drastically affected by the operating conditions of the BESS, as well as the type of load model used. © 2019 MDPI AG. All rights reserved.Recurso electrónicoapplication/pdfengMDPI AGhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2https://www.scopus.com/inward/record.uri?eid=2-s2.0-85076239314&doi=10.3390%2fen12234494&partnerID=40&md5=5aad556cf10a550cccf8bae524f3e92dScopus2-s2.0-85076239314Economic Dispatch of BESS and renewable generators in DC microgrids using voltage-dependent load modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Artificial neural networksBattery energy storage systemEconomic dispatch problemBattery storageCost reductionData storage equipmentElectric batteriesElectric machine theoryNeural networksNonlinear programmingSchedulingBattery energy storage systemsEconomic dispatch problemsOperating conditionOperational periodsPhotovoltaic sourcesRenewable generatorsShort term predictionVoltage dependent load modelsElectric load dispatchingMontoya O.D.Gil-González W.Grisales-Noreña L.F.Orozco-Henao C.Serra F.Mutarraf, M., Terriche, Y., Niazi, K., Vasquez, J., Guerrero, J., Energy storage systems for shipboard microgrids-a review (2018) Energies, 11, p. 3492. , [CrossRef]Hu, J., Shan, Y., Xu, Y., Guerrero, J.M., A coordinated control of hybrid ac/dc microgrids with pv-wind-battery under variable generation and load conditions (2019) Int. J. Electr. Power Energy Syst., 104, pp. 583-592. , [CrossRef]Gil-González, W., Montoya, O.D., Holguín, E., Garces, A., Grisales-Noreña, L.F., Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model (2019) J. Energy Storage, 21, pp. 1-8. , [CrossRef]Zou, D., Li, S., Kong, X., Ouyang, H., Li, Z., Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy (2019) Appl. Energy, 237, pp. 646-670. , [CrossRef]Zia, M.F., Elbouchikhi, E., Benbouzid, M., Guerrero, J., Energy management system for an islanded microgrid with convex relaxation (2019) IEEE Trans. Ind. Appl., , [CrossRef]Ma, W.-J., Wang, J., Lu, X., Gupta, V., Optimal operation mode selection for a dc microgrid (2016) IEEE Trans. Smart Grid, 7, pp. 2624-2632. , [CrossRef]Baros, D., Voglitsis, D., Papanikolaou, N.P., Kyritsis, A., Rigogiannis, N., Wireless power transfer for distributed energy sources exploitation in dc microgrids (2019) IEEE Trans. Sustain. Energy, 10, pp. 2039-2049. , [CrossRef]Montoya, O.D., Grajales, A., Garces, A., Castro, C.A., Distribution systems operation considering energy storage devices and distributed generation (2017) IEEE Lat. Am. Trans., 15, pp. 890-900. , [CrossRef]Rahmani-Andebili, M., Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization (2017) Renew. Energy, 113, pp. 1462-1471. , [CrossRef]Rodríguez, F., Fleetwood, A., Galarza, A., Fontán, L., Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control (2018) Renew. Energy, 126, pp. 855-864. , [CrossRef]Home-Ortiz, J.M., Pourakbari-Kasmaei, M., Lehtonen, M., Mantovani, J.R.S., Optimal location-allocation of storage devices and renewable-based dg in distribution systems (2019) Electr. Power Syst. Res., 172, pp. 11-21. , [CrossRef]Zolfaghari, M., Ghaffarzadeh, N., Ardakani, A.J., Optimal sizing of battery energy storage systems in off-grid micro grids using convex optimization (2019) J. Energy Storage, 23, pp. 44-56. , [CrossRef]Wu, X., Hu, X., Yin, X., Zhang, C., Qian, S., Optimal battery sizing of smart home via convex programming (2017) Energy, 140, pp. 444-453. , [CrossRef]Zheng, Y., Hill, D.J., Dong, Z.Y., Multi-agent optimal allocation of energy storage systems in distribution systems (2017) IEEE Trans. Sustain. Energy, 8, pp. 1715-1725. , [CrossRef]Zheng, Y., Dong, Z.Y., Luo, F.J., Meng, K., Qiu, J., Wong, K.P., Optimal allocation of energy storage system for risk mitigation of discos with high renewable penetrations (2014) IEEE Trans. Power Syst., 29, pp. 212-220. , [CrossRef]Mehmood, K., Khan, S.U., Lee, S., Haider, Z.M., Rafique, M.K., Kim, C., Optimal sizing and allocation of battery energy storage systems with wind and solar power dgs in a distribution network for voltage regulation considering the lifespan of batteries (2017) IET Renew. Power Gener., 11, pp. 1305-1315. , [CrossRef]Lakshmi, S., Ganguly, S., Multi-objective planning for the allocation of pv-bess integrated open upqc for peak load shaving of radial distribution networks (2019) J. Energy Storage, 22, pp. 208-218. , [CrossRef]Yamchi, H.B., Shahsavari, H., Kalantari, N.T., Safari, A., Farrokhifar, M., A cost-efficient application of different battery energy storage technologies in microgrids considering load uncertainty (2019) J. Energy Storage, 22, pp. 17-26. , [CrossRef]Das, C.K., Bass, O., Kothapalli, G., Mahmoud, T.S., Habibi, D., Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm (2018) Appl. Energy, 232, pp. 212-228. , [CrossRef]Wong, L.A., Ramachandaramurthy, V.K., Taylor, P., Ekanayake, J., Walker, S.L., Padmanaban, S., Review on the optimal placement, sizing and control of an energy storage system in the distribution network (2019) J. Energy Storage, 21, pp. 489-504. , [CrossRef]Montoya, D., Grajales, A., Grisales, L.F., Castro, C.A., Optimal location and operation of energy storage devices in microgrids in presence of distributed generation (in Spanish) (2017) Rev. Cintex, 22, pp. 97-117Amosa, M.K., Majozi, T., Gams supported optimization and predictability study of a multi-objective adsorption process with conflicting regions of optimal operating conditions (2016) Comput. Chem. Eng., 94, pp. 354-361. , [CrossRef]Naghiloo, A., Abbaspour, M., Mohammadi-Ivatloo, B., Bakhtari, K., Gams based approach for optimal design and sizing of a pressure retarded osmosis power plant in bahmanshir river of iran (2015) Renew. Sustain. Energy Rev., 52, pp. 1559-1565. , [CrossRef]Shen, Z., Wei, Z., Sun, G., Chen, S., Representing zip loads in convex relaxations of optimal power flow problems (2019) Int. J. Electr. Power Energy Syst., 110, pp. 372-385. , [CrossRef]Samui, A., Samantaray, S., An active islanding detection scheme for inverter-based dg with frequency dependent zip-exponential static load model (2016) Int. J. Electr. Power Energy Syst., 78, pp. 41-50. , [CrossRef]Mirakyan, A., Meyer-Renschhausen, M., Koch, A., Composite forecasting approach, application for next-day electricity price forecasting (2017) Energy Econ., 66, pp. 228-237. , [CrossRef]Yang, X., Xu, M., Xu, S., Han, X., Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining (2017) Appl. Energy, 206, pp. 683-696. , [CrossRef]Chen, S., Gooi, H., Wang, M., Solar radiation forecast based on fuzzy logic and neural networks (2013) Renew. Energy, 60, pp. 195-201. , [CrossRef]Sivaneasan, B., Yu, C., Goh, K., Solar forecasting using annwith fuzzy logic pre-processing (2017) Energy Procedia, 143, pp. 727-732. , [CrossRef]Kim, J., Moon, J., Hwang, E., Kang, P., Recurrent inception convolution neural network for multi short-term load forecasting (2019) Energy Build., 194, pp. 328-341. , [CrossRef]Morales-Ruiz, J.C., (2009) Economic Dispatch Model for Colombian Electricity Market, , http://www.xm.com.co/BoletinXM/Documents/XMDIALOG09.pdf, Tech. Rep.Expertos en Mercados: Medellin, Colombia. (accessed on 10 July 2019)Escobar-Dávila, L.F., Montoya-Giraldo, O.D., Giraldo-Buitrago, D., Global control of the furuta pendulum using artificial neural networks and feedback of state variables (2013) TecnoLogicas, pp. 71-94. , [CrossRef]. (In Spanish)Zhang, B., Xu, X., Li, X., Chen, X., Ye, Y., Wang, Z., Sentiment analysis through critic learning for optimizing convolutional neural networks with rules (2019) Neurocomputing, 356, pp. 21-30. , [CrossRef]Castillo, E., Conejo, A., Pedregal, P., García, R., (2001) Alguacil, Building and Solving Mathematical Programming Models in Engineering and Science, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, , Wiley: New York, NY, USA. [CrossRef]GAMS Free Demo Version, , https://www.gams.com/download/, GAMS Development Corp. (accessed on 15 July 2019)Montoya, D., Solving a classical optimization problem using gams optimizer package: Economic dispatch problem implementation (2017) Ingeniería y Ciencia, 13, pp. 39-63. , [CrossRef]Wires for Medium and High Voltage Levels, , http://www.centelsa.com/pdf/Cables-Media-alta-Tension.pdf, accessed on 10 July 2019Kocer, M.C., Cengiz, C., Gezer, M., Gunes, D., Cinar, M.A., Alboyaci, B., Onen, A., Assessment of battery storage technologies for a Turkish power network (2019) Sustainability, 11, p. 3669. , [CrossRef]Wang, P., Wang, W., Xu, D., Optimal sizing of distributed generations in dc microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, pp. 31129-31140. , [CrossRef]Time Series of Solar Radiation Data, , http://www.soda-pro.com/, (accessed on 5 July 2019). Data, S. S. Rhttp://purl.org/coar/resource_type/c_6501ORIGINALdoi103390en12234494.pdfapplication/pdf699330https://repositorio.utb.edu.co/bitstream/20.500.12585/9253/1/doi103390en12234494.pdf1a7c85d171b3539e0a66764344b43f4fMD51TEXTdoi103390en12234494.pdf.txtdoi103390en12234494.pdf.txtExtracted texttext/plain51903https://repositorio.utb.edu.co/bitstream/20.500.12585/9253/4/doi103390en12234494.pdf.txt19cc0fdf48c5e08fda1c1cb0cb0fa206MD54THUMBNAILdoi103390en12234494.pdf.jpgdoi103390en12234494.pdf.jpgGenerated Thumbnailimage/jpeg86413https://repositorio.utb.edu.co/bitstream/20.500.12585/9253/5/doi103390en12234494.pdf.jpg6f00e4e9a8a35aeee2c7a4a14f75d6feMD5520.500.12585/9253oai:repositorio.utb.edu.co:20.500.12585/92532023-05-26 11:06:19.808Repositorio Institucional UTBrepositorioutb@utb.edu.co |