Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation

settingsOrder Article Reprints Open AccessArticle Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation by Oscar Danilo Montoya 1,2,*ORCID,Walter Gil-González 3ORCID andJesus C. Hernández 4,*ORCID 1 Grupo de Compatibilidad e Interferencia Electromagnética (GCE...

Full description

Autores:
Montoya, Oscar Danilo
Gil-González, Walter
Hernández, Jesús C
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12312
Acceso en línea:
https://hdl.handle.net/20.500.12585/12312
Palabra clave:
Bipolar DC networks
Power loss minimization
Recursive optimal power flow solution
Sequential quadratic programming
Unbalanced loads
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_3704e74ce602854fd6be9367b149b6d0
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12312
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
title Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
spellingShingle Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
Bipolar DC networks
Power loss minimization
Recursive optimal power flow solution
Sequential quadratic programming
Unbalanced loads
title_short Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
title_full Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
title_fullStr Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
title_full_unstemmed Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
title_sort Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation
dc.creator.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Hernández, Jesús C
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Gil-González, Walter
Hernández, Jesús C
dc.subject.keywords.spa.fl_str_mv Bipolar DC networks
Power loss minimization
Recursive optimal power flow solution
Sequential quadratic programming
Unbalanced loads
topic Bipolar DC networks
Power loss minimization
Recursive optimal power flow solution
Sequential quadratic programming
Unbalanced loads
description settingsOrder Article Reprints Open AccessArticle Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation by Oscar Danilo Montoya 1,2,*ORCID,Walter Gil-González 3ORCID andJesus C. Hernández 4,*ORCID 1 Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia 2 Laboratorio Inteligente de Energía, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia 3 Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira 660003, Colombia 4 Department of Electrical Engineering, University of Jaén, Campus Lagunillas s/n, Edificio A3, 23071 Jaén, Spain * Authors to whom correspondence should be addressed. Energies 2023, 16(2), 589; https://doi.org/10.3390/en16020589 Received: 30 November 2022 / Revised: 23 December 2022 / Accepted: 29 December 2022 / Published: 4 January 2023 (This article belongs to the Collection Featured Papers in Electrical Power and Energy System) Download Browse Figures Versions Notes Abstract The problem regarding of optimal power flow in bipolar DC networks is addressed in this paper from the recursive programming stand of view. A hyperbolic relationship between constant power terminals and voltage profiles is used to resolve the optimal power flow in bipolar DC networks. The proposed approximation is based on the Taylors’ Taylor series expansion. In addition, nonlinear relationships between dispersed generators and voltage profiles are relaxed based on the small voltage voltage-magnitude variations in contrast with power output. The resulting optimization model transforms the exact nonlinear non-convex formulation into a quadratic convex approximation. The main advantage of the quadratic convex reformulation lies in finding the optimum global via recursive programming, which adjusts the point until the desired convergence is reached. Two test feeders composed of 21 and 33 buses are employed for all the numerical validations. The effectiveness of the proposed recursive convex model is verified through the implementation of different metaheuristic algorithms. All the simulations are carried out in the MATLAB programming environment using the convex disciplined tool known as CVX with the SEDUMI and SDPT3 solvers.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-21T16:18:05Z
dc.date.available.none.fl_str_mv 2023-07-21T16:18:05Z
dc.date.issued.none.fl_str_mv 2023-01-04
dc.date.submitted.none.fl_str_mv 2023-07
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Power Flow Solution for Bipolar DC Networks Using Recursive Quadratic Approximation. Energies 2023, 16, 589. https://doi.org/10.3390/en16020589
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12312
dc.identifier.doi.none.fl_str_mv 10.3390/en16020589
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Power Flow Solution for Bipolar DC Networks Using Recursive Quadratic Approximation. Energies 2023, 16, 589. https://doi.org/10.3390/en16020589
10.3390/en16020589
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12312
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 17 páginas
dc.format.medium.none.fl_str_mv Pdf
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies, Vol. 16 No. 2 (2023)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/1/Optimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/4/Optimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/5/Optimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.jpg
bitstream.checksum.fl_str_mv b9d66dfb8a3ba1b2b8de18a0a4384e5e
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
cf0ec65ce9cf0b9a306e9453bc9bd62c
088165166c94b8a306a92ee0827a8f43
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021803770642432
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter31e41d1d-191e-4bdd-b623-55ce85a65b9cHernández, Jesús C0bddc46e-ce64-47d5-b654-2b2dfc3d87dc2023-07-21T16:18:05Z2023-07-21T16:18:05Z2023-01-042023-07Montoya, O.D.; Gil-González, W.; Hernández, J.C. Optimal Power Flow Solution for Bipolar DC Networks Using Recursive Quadratic Approximation. Energies 2023, 16, 589. https://doi.org/10.3390/en16020589https://hdl.handle.net/20.500.12585/1231210.3390/en16020589Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarsettingsOrder Article Reprints Open AccessArticle Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximation by Oscar Danilo Montoya 1,2,*ORCID,Walter Gil-González 3ORCID andJesus C. Hernández 4,*ORCID 1 Grupo de Compatibilidad e Interferencia Electromagnética (GCEM), Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá 110231, Colombia 2 Laboratorio Inteligente de Energía, Facultad de Ingeniería, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia 3 Department of Electrical Engineering, Universidad Tecnológica de Pereira, Pereira 660003, Colombia 4 Department of Electrical Engineering, University of Jaén, Campus Lagunillas s/n, Edificio A3, 23071 Jaén, Spain * Authors to whom correspondence should be addressed. Energies 2023, 16(2), 589; https://doi.org/10.3390/en16020589 Received: 30 November 2022 / Revised: 23 December 2022 / Accepted: 29 December 2022 / Published: 4 January 2023 (This article belongs to the Collection Featured Papers in Electrical Power and Energy System) Download Browse Figures Versions Notes Abstract The problem regarding of optimal power flow in bipolar DC networks is addressed in this paper from the recursive programming stand of view. A hyperbolic relationship between constant power terminals and voltage profiles is used to resolve the optimal power flow in bipolar DC networks. The proposed approximation is based on the Taylors’ Taylor series expansion. In addition, nonlinear relationships between dispersed generators and voltage profiles are relaxed based on the small voltage voltage-magnitude variations in contrast with power output. The resulting optimization model transforms the exact nonlinear non-convex formulation into a quadratic convex approximation. The main advantage of the quadratic convex reformulation lies in finding the optimum global via recursive programming, which adjusts the point until the desired convergence is reached. Two test feeders composed of 21 and 33 buses are employed for all the numerical validations. The effectiveness of the proposed recursive convex model is verified through the implementation of different metaheuristic algorithms. All the simulations are carried out in the MATLAB programming environment using the convex disciplined tool known as CVX with the SEDUMI and SDPT3 solvers.17 páginasPdfapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Energies, Vol. 16 No. 2 (2023)Optimal Power Flow Solution for Bipolar DC Networks Using a Recursive Quadratic Approximationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Bipolar DC networksPower loss minimizationRecursive optimal power flow solutionSequential quadratic programmingUnbalanced loadsCartagena de IndiasChaves, M., Margato, E., Silva, J.F., Pinto, S.F., Santana, J. HVDC transmission systems: Bipolar back-to-back diode clamped multilevel converter with fast optimum-predictive control and capacitor balancing strategy (2011) Electric Power Systems Research, 81 (7), pp. 1436-1445. Cited 36 times. doi: 10.1016/j.epsr.2011.02.008Li, Z., Zhan, R., Li, Y., He, Y., Hou, J., Zhao, X., Zhang, X.-P. Recent developments in HVDC transmission systems to support renewable energy integration (2018) Global Energy Interconnection, 1 (5), pp. 595-607. Cited 43 times. www.keaipublishing.com/en/journals/global-energy-interconnection/ doi: 10.14171/j.2096-5117.gei.2018.05.009Rivera, S., Lizana F., R., Kouro, S., Dragicevic, T., Wu, B. Bipolar DC Power Conversion: State-of-the-Art and Emerging Technologies (Open Access) (2021) IEEE Journal of Emerging and Selected Topics in Power Electronics, 9 (2), art. no. 9036877, pp. 1192-1204. Cited 59 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2020.2980994Yang, M., Zhang, R., Zhou, N., Wang, Q. Unbalanced voltage control of bipolar DC microgrid based on distributed cooperative control (2020) Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications, ICIEA 2020, art. no. 9248177, pp. 339-344. Cited 6 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9248065 ISBN: 978-172815169-4 doi: 10.1109/ICIEA48937.2020.9248177Guo, C., Wang, Y., Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi‐Node Bipolar DC Distribution Network (Open Access) (2022) Electronics (Switzerland), 11 (1), art. no. 166. Cited 12 times. https://www.mdpi.com/2079-9292/11/1/166/pdf doi: 10.3390/electronics11010166Chew, B.S.H., Xu, Y., Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach (2019) IEEE Transactions on Power Systems, 34 (1), art. no. 8444703, pp. 28-39. Cited 48 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2018.2866817Montoya, O.D., Medina-Quesada, Á., Hernández, J.C. Optimal Pole-Swapping in Bipolar DC Networks Using Discrete Metaheuristic Optimizers (Open Access) (2022) Electronics (Switzerland), 11 (13), art. no. 2034. Cited 5 times. https://www.mdpi.com/2079-9292/11/13/2034/pdf?version=1656469417 doi: 10.3390/electronics11132034Medina-Quesada, Á., Montoya, O.D., Hernández, J.C. Derivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminals (Open Access) (2022) Sensors, 22 (8), art. no. 2914. Cited 10 times. https://www.mdpi.com/1424-8220/22/8/2914/pdf doi: 10.3390/s22082914Montoya, O.D., Gil-González, W., Garcés, A. A successive approximations method for power flow analysis in bipolar DC networks with asymmetric constant power terminals (Open Access) (2022) Electric Power Systems Research, 211, art. no. 108264. Cited 5 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2022.108264Lee, J.-O., Kim, Y.-S., Jeon, J.-H. Optimal power flow for bipolar DC microgrids (2022) International Journal of Electrical Power and Energy Systems, Part B 142, art. no. 108375. Cited 9 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2022.108375Garces, A., Montoya, O.D., Gil-Gonzalez, W. Power Flow in Bipolar DC Distribution Networks Considering Current Limits (2022) IEEE Transactions on Power Systems, 37 (5), pp. 4098-4101. Cited 7 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2022.3181851Marini, A., Mortazavi, S.S., Piegari, L., Ghazizadeh, M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (2019) Electric Power Systems Research, 170, pp. 229-243. Cited 43 times. doi: 10.1016/j.epsr.2018.12.026Shen, T., Li, Y., Xiang, J. A graph-based power flow method for balanced distribution systems (Open Access) (2018) Energies, 11 (3), art. no. 511. Cited 58 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11030511Sepúlveda-García, S., Montoya, O.D., Garcés, A. Power Flow Solution in Bipolar DC Networks Considering a Neutral Wire and Unbalanced Loads: A Hyperbolic Approximation (2022) Algorithms, 15 (10), art. no. 341. Cited 5 times. www.mdpi.com/journal/algorithms/ doi: 10.3390/a15100341Mackay, L., Dimou, A., Guarnotta, R., Morales-Espania, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow in bipolar DC distribution grids with asymmetric loading (Open Access) (2016) 2016 IEEE International Energy Conference, ENERGYCON 2016, art. no. 7513921. Cited 12 times. ISBN: 978-146738463-6 doi: 10.1109/ENERGYCON.2016.7513921MacKay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids (Open Access) (2018) IEEE Access, 6, pp. 5199-5207. Cited 27 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2789522Lee, J.-O., Kim, Y.-S., Moon, S.-I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids (Open Access) (2021) IEEE Transactions on Smart Grid, 12 (3), art. no. 9308969, pp. 1918-1928. Cited 24 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3046733Jat, C.K., Dave, J., Van Hertem, D., Ergun, H. Unbalanced OPF Modelling for Mixed Monopolar and Bipolar HVDC Grid Configurations (2022) arXiv. Cited 2 times. 2211.06283Montoya, O.D., Zishan, F., Giral-Ramírez, D.A. Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks (Open Access) (2022) Mathematics, 10 (19), art. no. 3649. Cited 7 times. http://www.mdpi.com/journal/mathematics doi: 10.3390/math10193649Garces, A. On the convergence of Newton's method in power flow studies for dc microgrids (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 120 times. doi: 10.1109/TPWRS.2018.2820430Baran, M.E., Wu, F.F. Optimal sizing of capacitors placed on a radial distribution system (Open Access) (1989) IEEE Transactions on Power Delivery, 4 (1), pp. 735-743. Cited 1110 times. doi: 10.1109/61.19266Kumar, S., Datta, D., Kumar Singh, S., Azar, A.T., Vaidyanathan, S. Black hole algorithm and its applications (Open Access) (2015) Studies in Computational Intelligence, 575, pp. 147-170. Cited 38 times. http://www.springer.com/series/7092 doi: 10.1007/978-3-319-11017-2_7Gabis, A.B., Meraihi, Y., Mirjalili, S., Ramdane-Cherif, A. A comprehensive survey of sine cosine algorithm: variants and applications (2021) Artificial Intelligence Review, 54 (7), pp. 5469-5540. Cited 45 times. www.springer.com/journal/10462 doi: 10.1007/s10462-021-10026-yDoʇan, B., Ölmez, T. Vortex search algorithm for the analog active filter component selection problem (2015) AEU - International Journal of Electronics and Communications, 69 (9), pp. 1243-1253. Cited 46 times. http://www.elsevier.com/aeue doi: 10.1016/j.aeue.2015.05.005Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (Open Access) (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALOptimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdfOptimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdfapplication/pdf327871https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/1/Optimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdfb9d66dfb8a3ba1b2b8de18a0a4384e5eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTOptimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.txtOptimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.txtExtracted texttext/plain51521https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/4/Optimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.txtcf0ec65ce9cf0b9a306e9453bc9bd62cMD54THUMBNAILOptimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.jpgOptimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.jpgGenerated Thumbnailimage/jpeg8122https://repositorio.utb.edu.co/bitstream/20.500.12585/12312/5/Optimal-Power-Flow-Solution-for-Bipolar-DC-Networks-Using-a-Recursive-Quadratic-ApproximationEnergies.pdf.jpg088165166c94b8a306a92ee0827a8f43MD5520.500.12585/12312oai:repositorio.utb.edu.co:20.500.12585/123122023-07-22 00:17:33.81Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=