Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa
The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discr...
- Autores:
-
Montoya, Oscar Danilo
Gil-González, Walter
Hernández, Jesus C.
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10336
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10336
- Palabra clave:
- Discrete-continuous vortex search algorithm
Radial distribution networks
Distribution static compensators
Annual operational costs minimization
Reactive power compensation
Daily active and reactive demand curves
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc/4.0/
id |
UTB2_36067da4351ea9874a3005f2bca84187 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10336 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa |
title |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa |
spellingShingle |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa Discrete-continuous vortex search algorithm Radial distribution networks Distribution static compensators Annual operational costs minimization Reactive power compensation Daily active and reactive demand curves LEMB |
title_short |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa |
title_full |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa |
title_fullStr |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa |
title_full_unstemmed |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa |
title_sort |
Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsa |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Hernández, Jesus C. |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Gil-González, Walter Hernández, Jesus C. |
dc.subject.keywords.spa.fl_str_mv |
Discrete-continuous vortex search algorithm Radial distribution networks Distribution static compensators Annual operational costs minimization Reactive power compensation Daily active and reactive demand curves |
topic |
Discrete-continuous vortex search algorithm Radial distribution networks Distribution static compensators Annual operational costs minimization Reactive power compensation Daily active and reactive demand curves LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-29T19:22:32Z |
dc.date.available.none.fl_str_mv |
2021-07-29T19:22:32Z |
dc.date.issued.none.fl_str_mv |
2021-03-02 |
dc.date.submitted.none.fl_str_mv |
2021-07-29 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. https://doi.org/10.3390/app11052175 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10336 |
dc.identifier.doi.none.fl_str_mv |
10.3390/app11052175 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. https://doi.org/10.3390/app11052175 10.3390/app11052175 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10336 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessRights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
18 páginas |
dc.format.medium.none.fl_str_mv |
Recurso en línea / Electrónico |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.sede.spa.fl_str_mv |
Campus Tecnológico |
dc.publisher.discipline.spa.fl_str_mv |
Ingeniería Eléctrica |
dc.source.spa.fl_str_mv |
Applied Sciences 2021, 11, 2175 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/1/applsci-11-02175.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/4/applsci-11-02175.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/5/applsci-11-02175.pdf.jpg |
bitstream.checksum.fl_str_mv |
060e759c03fd60357b9329c8c8ce9157 24013099e9e6abb1575dc6ce0855efd5 e20ad307a1c5f3f25af9304a7a7c86b6 1bf607864b01be6d79adda6243b2876a b5e0d37833f347bd523a3db48d87ad66 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021562919026688 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Gil-González, Walter1747fed9-7818-4c10-a283-efb3c73ebb27Hernández, Jesus C.349b3120-388b-42be-8bea-32156f0dc09d2021-07-29T19:22:32Z2021-07-29T19:22:32Z2021-03-022021-07-29Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175. https://doi.org/10.3390/app11052175https://hdl.handle.net/20.500.12585/1033610.3390/app11052175Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of reactive power compensation in electric distribution networks is addressed in this research paper from the point of view of the combinatorial optimization using a new discrete-continuous version of the vortex search algorithm (DCVSA). To explore and exploit the solution space, a discrete-continuous codification of the solution vector is proposed, where the discrete part determines the nodes where the distribution static compensator (D-STATCOM) will be installed, and the continuous part of the codification determines the optimal sizes of the D-STATCOMs. The main advantage of such codification is that the mixed-integer nonlinear programming model (MINLP) that represents the problem of optimal placement and sizing of the D-STATCOMs in distribution networks only requires a classical power flow method to evaluate the objective function, which implies that it can be implemented in any programming language. The objective function is the total costs of the grid power losses and the annualized investment costs in D-STATCOMs. In addition, to include the impact of the daily load variations, the active and reactive power demand curves are included in the optimization model. Numerical results in two radial test feeders with 33 and 69 buses demonstrate that the proposed DCVSA can solve the MINLP model with best results when compared with the MINLP solvers available in the GAMS software. All the simulations are implemented in MATLAB software using its programming environment.Universidad Tecnológica de Bolívar18 páginasRecurso en línea / Electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Applied Sciences 2021, 11, 2175Efficient operative cost reduction in distribution grids considering the optimal placement and sizing of d-statcoms using a discrete-continuous vsainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Discrete-continuous vortex search algorithmRadial distribution networksDistribution static compensatorsAnnual operational costs minimizationReactive power compensationDaily active and reactive demand curvesLEMBCartagena de IndiasCampus TecnológicoIngeniería EléctricaInvestigadoresAlam, M.S.; Arefifar, S.A. Energy Management in Power Distribution Systems: Review, Classification, Limitations and Challenges. IEEE Access 2019, 7, 92979–93001Montoya, O.D.; Gil-González, W. Dynamic active and reactive power compensation in distribution networks with batteries: A day-ahead economic dispatch approach. Comput. Electr. Eng. 2020, 85, 106710.Montoya, O.; Gil-González, W.; Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges. Int. J. Electr. Power Energy Syst. 2020, 123, 106299.Sadovskaia, K.; Bogdanov, D.; Honkapuro, S.; Breyer, C. Power transmission and distribution losses—A model based on available empirical data and future trends for all countries globally. Int. J. Electr. Power Energy Syst. 2019, 107, 98–109Montoya, O.D.; Serra, F.M.; Angelo, C.H.D. On the Efficiency in Electrical Networks with AC and DC Operation Technologies: A Comparative Study at the Distribution Stage. Electronics 2020, 9, 1352Marjani, S.R.; Talavat, V.; Galvani, S. Optimal allocation of D-STATCOM and reconfiguration in radial distribution network using MOPSO algorithm in TOPSIS framework. Int. Trans. Electr. Energy Syst. 2018, 29, e2723.Tolabi, H.B.; Ali, M.H.; Rizwan, M. Simultaneous Reconfiguration, Optimal Placement of DSTATCOM, and Photovoltaic Array in a Distribution System Based on Fuzzy-ACO Approach. IEEE Trans. Sustain. Energy 2015, 6, 210–218Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914Montoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26Grisales-Noreña, L.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488Sirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–694Saxena, N.K.; Kumar, A. Cost based reactive power participation for voltage control in multi units based isolated hybrid power system. J. Electr. Syst. Inf. Technol. 2016, 3, 442–453.Gupta, A.R.; Kumar, A. Energy Savings Using D-STATCOM Placement in Radial Distribution System. Procedia Comput. Sci. 2015, 70, 558–564Samimi, A.; Golkar, M.A. A Novel Method for Optimal Placement of STATCOM in Distribution Networks Using Sensitivity Analysis by DIgSILENT Software. In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011Jazebi, S.; Hosseinian, S.; Vahidi, B. DSTATCOM allocation in distribution networks considering reconfiguration using differential evolution algorithm. Energy Convers. Manag. 2011, 52, 2777–2783.Devi, S.; Geethanjali, M. Optimal location and sizing determination of Distributed Generation and DSTATCOM using Particle Swarm Optimization algorithm. Int. J. Electr. Power Energy Syst. 2014, 62, 562–570Devi, S.; Geethanjali, M. Placement and Sizing of D-STATCOM Using Particle Swarm Optimization. In Lecture Notes in Electrical Engineering; Springer: Chennai, India, 2014; pp. 941–951Bagherinasab, A.; Zadehbagheri, M.; Khalid, S.A.; Gandomkar, M.; Azli, N.A. Optimal Placement of D-STATCOM Using Hybrid Genetic and Ant Colony Algorithm to Losses Reduction. Int. J. Appl. Power Eng. 2013, 2Singh, B.; Singh, S. GA-based optimization for integration of DGs, STATCOM and PHEVs in distribution systems. Energy Rep. 2019, 5, 84–103Karami, H.; Zaker, B.; Vahidi, B.; Gharehpetian, G.B. Optimal Multi-objective Number, Locating, and Sizing of Distributed Generations and Distributed Static Compensators Considering Loadability using the Genetic Algorithm. Electr. Power Compon. Syst. 2016, 44, 2161–2171.Rukmani, D.K.; Thangaraj, Y.; Subramaniam, U.; Ramachandran, S.; Elavarasan, R.M.; Das, N.; Baringo, L.; Rasheed, M.I.A. A New Approach to Optimal Location and Sizing of DSTATCOM in Radial Distribution Networks Using Bio-Inspired Cuckoo Search Algorithm. Energies 2020, 13, 4615.Yuvaraj, T.; Ravi, K.; Devabalaji, K.R. Optimal Allocation of DG and DSTATCOM in Radial Distribution System Using Cuckoo Search Optimization Algorithm. Model. Simul. Eng. 2017, 2017, 2857926Nguyen, K.P.; Fujita, G.; Dieu, V.N. Cuckoo Search Algorithm for Optimal Placement and Sizing of Static Var Compensator in Large-Scale Power Systems. J. Artif. Intell. Soft Comput. Res. 2016, 6, 59–68Yuvaraj, T.; Ravi, K. Multi-objective simultaneous DG and DSTATCOM allocation in radial distribution networks using cuckoo searching algorithm. Alex. Eng. J. 2018, 57, 2729–2742Taher, S.A.; Afsari, S.A. Optimal location and sizing of DSTATCOM in distribution systems by immune algorithm. Int. J. Electr. Power Energy Syst. 2014, 60, 34–44Yuvaraj, T.; Devabalaji, K.; Ravi, K. Optimal Placement and Sizing of DSTATCOM Using Harmony Search Algorithm. Energy Procedia 2015, 79, 759–765Zhang, T.; Xu, X.; Li, Z.; Abu-Siada, A.; Guo, Y. Optimum Location and Parameter Setting of STATCOM Based on Improved Differential Evolution Harmony Search Algorithm. IEEE Access 2020, 8, 87810–87819Sedighizadeh, M.; Eisapour-Moarref, A. The Imperialist Competitive Algorithm for Optimal Multi-Objective Location and Sizing of DSTATCOM in Distribution Systems Considering Loads Uncertainty. INAE Lett. 2017, 2, 83–95.Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454Doğan, B.; Ölmez, T. Vortex search algorithm for the analog active filter component selection problem. AEU—Int. J. Electron. Commun. 2015, 69, 1243–1253Özkış, A.; Babalık, A. A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm. Inf. Sci. 2017, 402, 124–148.Montoya, O.D.; Gil-Gonzalez, W.; Grisales-Norena, L.F. Vortex Search Algorithm for Optimal Power Flow Analysis in DC Resistive Networks with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1439–1443Sharma, A.K.; Saxena, A.; Tiwari, R. Optimal Placement of SVC Incorporating Installation Cost. Int. J. Hybrid Inf. Technol. 2016, 9, 289–302.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALapplsci-11-02175.pdfapplsci-11-02175.pdfArtículoapplication/pdf399020https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/1/applsci-11-02175.pdf060e759c03fd60357b9329c8c8ce9157MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/2/license_rdf24013099e9e6abb1575dc6ce0855efd5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTapplsci-11-02175.pdf.txtapplsci-11-02175.pdf.txtExtracted texttext/plain60114https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/4/applsci-11-02175.pdf.txt1bf607864b01be6d79adda6243b2876aMD54THUMBNAILapplsci-11-02175.pdf.jpgapplsci-11-02175.pdf.jpgGenerated Thumbnailimage/jpeg102861https://repositorio.utb.edu.co/bitstream/20.500.12585/10336/5/applsci-11-02175.pdf.jpgb5e0d37833f347bd523a3db48d87ad66MD5520.500.12585/10336oai:repositorio.utb.edu.co:20.500.12585/103362021-07-30 02:00:05.495Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |