Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses

The problem of optimal phase-balancing in three-phase asymmetric distribution networks is addressed in this research from the point of view of combinatorial optimization using a master– slave optimization approach. The master stage employs an improved sine cosine algorithm (ISCA), which is entrusted...

Full description

Autores:
Montoya Giraldo, Oscar Danilo
Alarcon-Villamil, Jorge Alexander
Hernández, Jesus C.
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10635
Acceso en línea:
https://hdl.handle.net/20.500.12585/10635
https://doi.org/10.3390/en14154535
Palabra clave:
Three-phase distribution networks
Optimal phase balancing
Improved sine cosine algorithm
Annual operating costs; working groups
Combinatorial optimization
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_34658e1b2fdc0b69309ac26e43711566
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10635
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
title Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
spellingShingle Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
Three-phase distribution networks
Optimal phase balancing
Improved sine cosine algorithm
Annual operating costs; working groups
Combinatorial optimization
LEMB
title_short Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
title_full Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
title_fullStr Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
title_full_unstemmed Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
title_sort Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy losses
dc.creator.fl_str_mv Montoya Giraldo, Oscar Danilo
Alarcon-Villamil, Jorge Alexander
Hernández, Jesus C.
dc.contributor.author.none.fl_str_mv Montoya Giraldo, Oscar Danilo
Alarcon-Villamil, Jorge Alexander
Hernández, Jesus C.
dc.subject.keywords.spa.fl_str_mv Three-phase distribution networks
Optimal phase balancing
Improved sine cosine algorithm
Annual operating costs; working groups
Combinatorial optimization
topic Three-phase distribution networks
Optimal phase balancing
Improved sine cosine algorithm
Annual operating costs; working groups
Combinatorial optimization
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description The problem of optimal phase-balancing in three-phase asymmetric distribution networks is addressed in this research from the point of view of combinatorial optimization using a master– slave optimization approach. The master stage employs an improved sine cosine algorithm (ISCA), which is entrusted with determining the load reconfiguration at each node. The slave stage evaluates the energy losses for each set of load connections provided by the master stage by implementing the triangular-based power flow method. The mathematical model that was solved using the ISCA is designed to minimize the annual operating costs of the three-phase network. These costs include the annual costs of the energy losses, considering daily active and reactive power curves, as well as the costs of the working groups tasked with the implementation of the phase-balancing plan at each node. The peak load scenario was evaluated for a 15-bus test system to demonstrate the effectiveness of the proposed ISCA in reducing the power loss (18.66%) compared with optimization methods such as genetic algorithm (18.64%), the classical sine cosine algorithm (18.42%), black-hole optimizer (18.38%), and vortex search algorithm (18.59%). The IEEE 37-bus system was employed to determine the annual total costs of the network before and after implementing the phase-balancing plan provided by the proposed ISCA. The annual operative costs were reduced by about 13% with respect to the benchmark case, with investments between USD 2100 and USD 2200 in phase-balancing activities developed by the working groups. In addition, the positive effects of implementing the phasebalancing plan were evidenced in the voltage performance of the IEEE 37-bus system by improving the voltage regulation with a maximum of 4% in the whole network from an initial regulation of 6.30%. All numerical validations were performed in the MATLAB programming environment.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-07-27
dc.date.accessioned.none.fl_str_mv 2022-03-24T15:43:42Z
dc.date.available.none.fl_str_mv 2022-03-24T15:43:42Z
dc.date.submitted.none.fl_str_mv 2022-03-23
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str draft
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; AlarconVillamil, J.A.; Hernández, J.C. Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping Including the Costs of the Working Groups and Energy Losses. Energies 2021, 14, 4535. https://doi.org/10.3390/en14154535
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10635
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/en14154535
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; AlarconVillamil, J.A.; Hernández, J.C. Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping Including the Costs of the Working Groups and Energy Losses. Energies 2021, 14, 4535. https://doi.org/10.3390/en14154535
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10635
https://doi.org/10.3390/en14154535
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 22 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Energies, vol. 14 N° 15 (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/1/energies-14-04535-v3.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/5/energies-14-04535-v3.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/4/energies-14-04535-v3.pdf.jpg
bitstream.checksum.fl_str_mv a0c2f9c1e5a8f91e35e30c2e28e34d3f
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
c6ce15f5c6de0989942cc7085f62d385
da3c487e2d9fefb093ae0a7f98a6491e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021741942407168
spelling Montoya Giraldo, Oscar Daniloc66dce06-2f1b-4a61-9631-60e8f37e8432Alarcon-Villamil, Jorge Alexanderafeab025-85c3-471d-9d8c-685a95aa3eb5Hernández, Jesus C.349b3120-388b-42be-8bea-32156f0dc09d2022-03-24T15:43:42Z2022-03-24T15:43:42Z2021-07-272022-03-23Montoya, O.D.; AlarconVillamil, J.A.; Hernández, J.C. Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping Including the Costs of the Working Groups and Energy Losses. Energies 2021, 14, 4535. https://doi.org/10.3390/en14154535https://hdl.handle.net/20.500.12585/10635https://doi.org/10.3390/en14154535Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe problem of optimal phase-balancing in three-phase asymmetric distribution networks is addressed in this research from the point of view of combinatorial optimization using a master– slave optimization approach. The master stage employs an improved sine cosine algorithm (ISCA), which is entrusted with determining the load reconfiguration at each node. The slave stage evaluates the energy losses for each set of load connections provided by the master stage by implementing the triangular-based power flow method. The mathematical model that was solved using the ISCA is designed to minimize the annual operating costs of the three-phase network. These costs include the annual costs of the energy losses, considering daily active and reactive power curves, as well as the costs of the working groups tasked with the implementation of the phase-balancing plan at each node. The peak load scenario was evaluated for a 15-bus test system to demonstrate the effectiveness of the proposed ISCA in reducing the power loss (18.66%) compared with optimization methods such as genetic algorithm (18.64%), the classical sine cosine algorithm (18.42%), black-hole optimizer (18.38%), and vortex search algorithm (18.59%). The IEEE 37-bus system was employed to determine the annual total costs of the network before and after implementing the phase-balancing plan provided by the proposed ISCA. The annual operative costs were reduced by about 13% with respect to the benchmark case, with investments between USD 2100 and USD 2200 in phase-balancing activities developed by the working groups. In addition, the positive effects of implementing the phasebalancing plan were evidenced in the voltage performance of the IEEE 37-bus system by improving the voltage regulation with a maximum of 4% in the whole network from an initial regulation of 6.30%. All numerical validations were performed in the MATLAB programming environment.22 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Energies, vol. 14 N° 15 (2021)Operating cost reduction in distribution networks based on the optimal phase-swapping including the costs of the working groups and energy lossesinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_b1a7d7d4d402bcceThree-phase distribution networksOptimal phase balancingImproved sine cosine algorithmAnnual operating costs; working groupsCombinatorial optimizationLEMBCartagena de IndiasCheng, L.; Chang, Y.; Liu, M.; Feng, H.; Wu, Q. Typical medium voltage distribution system topologies in China: A review and a comparison of reliability. In Proceedings of the 2014 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Durham, UK, 7 July 2014; IEEE: Piscataway, NJ, USA, 2014;Temiz, A.; Almalki, A.M.; Kahraman, Ö.; Alshahrani, S.S.; Sönmez, E.B.; Almutairi, S.S.; Nadar, A.; Smiai, M.S.; Alabduljabbar, A.A. Investigation of MV Distribution Networks with High-Penetration Distributed PVs: Study for an Urban Area. Energy Procedia 2017, 141, 517–524.Zamani, A.; Sidhu, T.; Yazdani, A. A strategy for protection coordination in radial distribution networks with distributed generators. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; IEEE: Piscataway, NJ, USA, 2010;Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282Riaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419Soma, G.G. Optimal Sizing and Placement of Capacitor Banks in Distribution Networks Using a Genetic Algorithm. Electricity 2021, 2, 187–204Gil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914Lueken, C.; Carvalho, P.M.; Apt, J. Distribution grid reconfiguration reduces power losses and helps integrate renewables. Energy Policy 2012, 48, 260–273.Vai, V.; Suk, S.; Lorm, R.; Chhlonh, C.; Eng, S.; Bun, L. Optimal Reconfiguration in Distribution Systems with Distributed Generations Based on Modified Sequential Switch Opening and Exchange. Appl. Sci. 2021, 11, 2146Granada-Echeverri, M.; Gallego-Rendón, R.A.; López-Lezama, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ingeniería Cienc. 2012, 8, 121–140. [Huang, M.Y.; Chen, C.S.; Lin, C.H.; Kang, M.S.; Chuang, H.J.; Huang, C.W. Three-phase balancing of distribution feeders using immune algorithm. IET Gener. Transm. Distrib. 2008, 2, 383Montoya, O.D.; Gil-González, W.; Hernández, J.C. Efficient Operative Cost Reduction in Distribution Grids Considering the Optimal Placement and Sizing of D-STATCOMs Using a Discrete-Continuous VSA. Appl. Sci. 2021, 11, 2175Kong, W.; Ma, K.; Fang, L.; Wei, R.; Li, F. Cost-Benefit Analysis of Phase Balancing Solution for Data-Scarce LV Networks by Cluster-Wise Gaussian Process Regression. IEEE Trans. Power Syst. 2020, 35, 3170–3180.Han, X.; Wang, H.; Liang, D. Master-slave game optimization method of smart energy systems considering the uncertainty of renewable energy. Int. J. Energy Res. 2020, 45, 642–660Montoya, O.D.; Molina-Cabrera, A.; Grisales-Noreña, L.F.; Hincapié, R.A.; Granada, M. Improved Genetic Algorithm for Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach. Computation 2021, 9, 67.Fei, C.-G.; Wang, R. Using Phase Swapping to Solve Load Phase Balancing by ADSCHNN in LV Distribution Network. Int. J. Control Autom. 2014, 7, 1–14. [Siti, M.; Jimoh, A.; Nicolae, D. Phase load balancing in the secondary distribution network using fuzzy logic. In Proceedings of the AFRICON 2007, Windhoek, Namibia, 26–28 September 2007; IEEE: Piscataway, NJ, USA, 2007. Sathiskumar, M.; kumar, A.N.; Lakshminarasimman, L.; Thiruvenkadam, S. A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system. Int. J. Electr. Power Energy Syst. 2012, 42, 91–97Hooshmand, R.A.; Soltani, S. Fuzzy Optimal Phase Balancing of Radial and Meshed Distribution Networks Using BF-PSO Algorithm. IEEE Trans. Power Syst. 2012, 27, 47–57Hooshmand, R.; Soltani, S. Simultaneous optimization of phase balancing and reconfiguration in distribution networks using BF–NM algorithm. Int. J. Electr. Power Energy Syst. 2012, 41, 76–86Garces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids. Appl. Sci. 2021, 11, 1972Montoya, O.D.; Arias-Londoño, A.; Grisales-Noreña, L.F.; Barrios, J.Á.; Chamorro, H.R. Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model. Symmetry 2021, 13, 1124Khodr, H.; Zerpa, I.; de Jesu's, P.D.O.; Matos, M. Optimal Phase Balancing in Distribution System Using Mixed-Integer Linear Programming. In Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, Caracas, Venezuela, 15–18 August 2006; IEEE: Piscataway, NJ, USA, 2006Turgut, M.S.; Turgut, O.E.; Afan, H.A.; El-Shafie, A. A novel Master–Slave optimization algorithm for generating an optimal release policy in case of reservoir operation. J. Hydrol. 2019, 577, 123959Yang, B.; Chen, Y.; Zhao, Z.; Han, Q. A Master-Slave Particle Swarm Optimization Algorithm for Solving Constrained Optimization Problems. In Proceedings of the 2006 6th World Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; IEEE: Piscataway, NJ, USA, 2006Jesus, P.D.O.D.; Alvarez, M.; Yusta, J. Distribution power flow method based on a real quasi-symmetric matrix. Electr. Power Syst. Res. 2013, 95, 148–159Montoya, O.D.; Giraldo, J.S.; Grisales-Noreña, L.F.; Chamorro, H.R.; Alvarado-Barrios, L. Accurate and Efficient Derivative-Free Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation 2021, 9, 61.Naumov, I.V.; Karamov, D.N.; Tretyakov, A.N.; Yakupova, M.A.; Fedorinova, E.S. Asymmetric power consumption in rural electric networks. In Proceedings of the IOP Conference Series: Earth and Environmental Science 2021, Kuala Lumpur, Malaysia, 16 April 2021; Volume 677, p. 032088Hu, R.; Li, Q.; Qiu, F. Ensemble Learning Based Convex Approximation of Three-Phase Power Flow. IEEE Trans. Power Syst. 2021, 1–10Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243Montoya, O.D.; Molina-Cabrera, A.; Chamorro, H.R.; Alvarado-Barrios, L.; Rivas-Trujillo, E. A Hybrid Approach Based on SOCP and the Discrete Version of the SCA for Optimal Placement and Sizing DGs in AC Distribution Networks. Electronics 2020, 10, 26Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl. Based Syst. 2016, 96, 120–133Herrera-Briñez, M.C.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. The Equivalence between Successive Approximations and Matricial Load Flow Formulations. Appl. Sci. 2021, 11, 2905Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.; Orozco-Henao, C.; Serra, F. Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models. Energies 2019, 12, 4494Attia, A.F.; Sehiemy, R.A.E.; Hasanien, H.M. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. Int. J. Electr. Power Energy Syst. 2018, 99, 331–343.Hasan, Z.; El-Hawary, M.E. Optimal Power Flow by Black Hole Optimization Algorithm. In Proceedings of the 2014 IEEE Electrical Power and Energy Conference, Calgary, AB, Canada, 12–14 November 2014; IEEE: Piscataway, NJ, USA, 2014;http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALenergies-14-04535-v3.pdfenergies-14-04535-v3.pdfapplication/pdf398148https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/1/energies-14-04535-v3.pdfa0c2f9c1e5a8f91e35e30c2e28e34d3fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTenergies-14-04535-v3.pdf.txtenergies-14-04535-v3.pdf.txtExtracted texttext/plain70035https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/5/energies-14-04535-v3.pdf.txtc6ce15f5c6de0989942cc7085f62d385MD55THUMBNAILenergies-14-04535-v3.pdf.jpgenergies-14-04535-v3.pdf.jpgGenerated Thumbnailimage/jpeg102504https://repositorio.utb.edu.co/bitstream/20.500.12585/10635/4/energies-14-04535-v3.pdf.jpgda3c487e2d9fefb093ae0a7f98a6491eMD5420.500.12585/10635oai:repositorio.utb.edu.co:20.500.12585/106352022-03-26 00:17:44.449Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=