Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications

Biochars are outstanding materials obtained from the pyrolysis of biomass, possessing unique physicochemical properties that are attractive for many environmental applications, including photocatalysis. In this work, we have synthesized for the first time TiO2/Biochar composites using Aeroxide P25 T...

Full description

Autores:
Castilla Caballero, Deyler Rafael
Hernández-Ramírez, Aracely
Vázquez-Rodríguez, Sofía
Colina-Márquez, José
Machuca-Martínez, Fiderman
Barraza-Burgos, Juan
Roa-Espinosa, Aicardo
Medina Guerrero, Astrid del Rosario
Gunasekaran, Sundaram
Colina-Márquez, José
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12461
Acceso en línea:
https://hdl.handle.net/20.500.12585/12461
Palabra clave:
Biochar
Impregnation,
Calcination
Physicochemical characterization
Photoactivity
LEMB
Rights
embargoedAccess
License
http://purl.org/coar/access_right/c_f1cf
id UTB2_345b7bbdd1286f7ec9a14d9aaa5615b8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12461
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.es_CO.fl_str_mv Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
title Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
spellingShingle Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
Biochar
Impregnation,
Calcination
Physicochemical characterization
Photoactivity
LEMB
title_short Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
title_full Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
title_fullStr Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
title_full_unstemmed Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
title_sort Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications
dc.creator.fl_str_mv Castilla Caballero, Deyler Rafael
Hernández-Ramírez, Aracely
Vázquez-Rodríguez, Sofía
Colina-Márquez, José
Machuca-Martínez, Fiderman
Barraza-Burgos, Juan
Roa-Espinosa, Aicardo
Medina Guerrero, Astrid del Rosario
Gunasekaran, Sundaram
Colina-Márquez, José
dc.contributor.author.none.fl_str_mv Castilla Caballero, Deyler Rafael
Hernández-Ramírez, Aracely
Vázquez-Rodríguez, Sofía
Colina-Márquez, José
Machuca-Martínez, Fiderman
Barraza-Burgos, Juan
Roa-Espinosa, Aicardo
Medina Guerrero, Astrid del Rosario
Gunasekaran, Sundaram
Colina-Márquez, José
dc.subject.keywords.es_CO.fl_str_mv Biochar
Impregnation,
Calcination
Physicochemical characterization
Photoactivity
topic Biochar
Impregnation,
Calcination
Physicochemical characterization
Photoactivity
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Biochars are outstanding materials obtained from the pyrolysis of biomass, possessing unique physicochemical properties that are attractive for many environmental applications, including photocatalysis. In this work, we have synthesized for the first time TiO2/Biochar composites using Aeroxide P25 TiO2 and biochars produced from the thermal treatment at low (or null) oxygen content of Colombian coconut shells. To explore and ultimately tune the final physicochemical properties of the TiO2/Biochars materials, a facile wet impregnation method was assessed, in which the following factors were evaluated: 1) Temperature and 2) %O2 in the pyrolysis of the biomass, 3) TiO2/Biochar ratio used in the impregnation and 4) Calcination temperature of the TiO2/Biochar composites. A comprehensive characterization of the novel composites was done, using techniques such as: XRD, XPS, BET, ATR-FTIR, diffuse reflectance, PL, SEM, and electrochemical analysis. The material synthesized with TPyrol = 350 ◦C, %O2 = 2.5, T/B = 0.8 and TCal of 800 ◦C presented notable properties such as low Eg, reduced recombination of e--h+ pairs, a high surface area, and a relatively high photogeneration of charges, and interestingly, it experienced phase transition from Anatase-Rutile to Anatase-Brookite. On the other hand, low TPyrol and high %O2 values conduct to hydrophilic functional groups on the TiO2/Biochar composites, whereas the use of higher TPyrol and TCal lead to a more hydrophobic character but promote the reduction of the recombination of photogenerated e--h+ pairs. As a result, this information is relevant for planning future applications of photocatalysis for degrading pollutants of different chemical nature.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-17T20:37:48Z
dc.date.available.none.fl_str_mv 2023-08-17T20:37:48Z
dc.date.issued.none.fl_str_mv 2023-06-02
dc.date.submitted.none.fl_str_mv 2023-08-17
dc.date.embargoEnd.es_CO.fl_str_mv eu-repo/date/embargoEnd/2023-06-03
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.es_CO.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.es_CO.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.es_CO.fl_str_mv Castilla-Caballero, D., Hernandez-Ramirez, A., Vazquez-Rodriguez, S., Colina-Márquez, J., Machuca-Martínez, F., Barraza-Burgos, J., Roa-Espinosa, A., Medina-Guerrero, A., & Gunasekaran, S. (2023). Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications. Journal of Environmental Chemical Engineering, 11(3), 110274. https://doi.org/10.1016/j.jece.2023.110274
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12461
dc.identifier.doi.none.fl_str_mv 10.1016/j.jece.2023.110274
dc.identifier.instname.es_CO.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.es_CO.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Castilla-Caballero, D., Hernandez-Ramirez, A., Vazquez-Rodriguez, S., Colina-Márquez, J., Machuca-Martínez, F., Barraza-Burgos, J., Roa-Espinosa, A., Medina-Guerrero, A., & Gunasekaran, S. (2023). Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications. Journal of Environmental Chemical Engineering, 11(3), 110274. https://doi.org/10.1016/j.jece.2023.110274
10.1016/j.jece.2023.110274
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12461
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.accessrights.es_CO.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_f1cf
dc.format.extent.none.fl_str_mv Archivo original:16 páginas
dc.format.mimetype.es_CO.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia-México-Estados Unidos
dc.coverage.temporal.none.fl_str_mv 2017-2023
dc.publisher.place.es_CO.fl_str_mv Cartagena de Indias
dc.publisher.sede.es_CO.fl_str_mv Campus Tecnológico
dc.publisher.discipline.es_CO.fl_str_mv Ingeniería Ambiental
dc.source.es_CO.fl_str_mv Journal of Environmental Chemical Engineering
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/1/Art%c3%adculo%20para%20repositorio.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/3/Art%c3%adculo%20para%20repositorio.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/4/Art%c3%adculo%20para%20repositorio.pdf.jpg
bitstream.checksum.fl_str_mv 4b36ec09c0f3eb5bf89b7fcaf06f9bea
e20ad307a1c5f3f25af9304a7a7c86b6
c3ca756d58366b2def57e820e93f7b37
affb070823394944c300097bb3d70302
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397605398380544
spelling Castilla Caballero, Deyler Rafael28384f4a-bfa7-4f46-b5df-29751d712be0600Hernández-Ramírez, Aracely1f3a3200-bc83-481a-b9c4-427af5641505Vázquez-Rodríguez, Sofíae0bc9e7c-6b5b-4892-962f-30cf2a70ba93Colina-Márquez, José39587799-ed8e-45d9-9f01-54dfe6d4de7eMachuca-Martínez, Fidermane46cf666-880a-44a1-9dc6-a5e1e6e6a664Barraza-Burgos, Juan64136613-9a63-45b4-b660-40a8723b2b1dRoa-Espinosa, Aicardo5d623d37-76cc-4607-8c07-41c0e261bff7Medina Guerrero, Astrid del Rosario08bc2e6c-1173-4d41-bb27-32a1d4a26a67Gunasekaran, Sundaram685b7040-ab80-48fc-b230-4468416dafffColina-Márquez, Joséa13f7e08-8b8e-463a-9940-ecb6195e673dColombia-México-Estados Unidos2017-20232023-08-17T20:37:48Z2023-08-17T20:37:48Z2023-06-022023-08-17eu-repo/date/embargoEnd/2023-06-03Castilla-Caballero, D., Hernandez-Ramirez, A., Vazquez-Rodriguez, S., Colina-Márquez, J., Machuca-Martínez, F., Barraza-Burgos, J., Roa-Espinosa, A., Medina-Guerrero, A., & Gunasekaran, S. (2023). Effect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applications. Journal of Environmental Chemical Engineering, 11(3), 110274. https://doi.org/10.1016/j.jece.2023.110274https://hdl.handle.net/20.500.12585/1246110.1016/j.jece.2023.110274Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarBiochars are outstanding materials obtained from the pyrolysis of biomass, possessing unique physicochemical properties that are attractive for many environmental applications, including photocatalysis. In this work, we have synthesized for the first time TiO2/Biochar composites using Aeroxide P25 TiO2 and biochars produced from the thermal treatment at low (or null) oxygen content of Colombian coconut shells. To explore and ultimately tune the final physicochemical properties of the TiO2/Biochars materials, a facile wet impregnation method was assessed, in which the following factors were evaluated: 1) Temperature and 2) %O2 in the pyrolysis of the biomass, 3) TiO2/Biochar ratio used in the impregnation and 4) Calcination temperature of the TiO2/Biochar composites. A comprehensive characterization of the novel composites was done, using techniques such as: XRD, XPS, BET, ATR-FTIR, diffuse reflectance, PL, SEM, and electrochemical analysis. The material synthesized with TPyrol = 350 ◦C, %O2 = 2.5, T/B = 0.8 and TCal of 800 ◦C presented notable properties such as low Eg, reduced recombination of e--h+ pairs, a high surface area, and a relatively high photogeneration of charges, and interestingly, it experienced phase transition from Anatase-Rutile to Anatase-Brookite. On the other hand, low TPyrol and high %O2 values conduct to hydrophilic functional groups on the TiO2/Biochar composites, whereas the use of higher TPyrol and TCal lead to a more hydrophobic character but promote the reduction of the recombination of photogenerated e--h+ pairs. As a result, this information is relevant for planning future applications of photocatalysis for degrading pollutants of different chemical nature.Minciencias-Fulbright-Universidad del ValleArchivo original:16 páginasapplication/pdfengJournal of Environmental Chemical EngineeringEffect of pyrolysis, impregnation, and calcination conditions on the physicochemical properties of TiO2/Biochar composites intended for photocatalytic applicationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85BiocharImpregnation,CalcinationPhysicochemical characterizationPhotoactivityLEMBinfo:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfCartagena de IndiasCampus TecnológicoIngeniería AmbientalPúblico generalM. Zeshan et al. Remediation of pesticides using TiO2 based photocatalytic strategies: a review Chemosphere (2022)S. Kundu et al. Polymeric photocatalytic membrane: an emerging solution for environmental remediation Chem. Eng. J. (2022)M. Motamedi et al. Recent developments in photocatalysis of industrial effluents ։ a review and example of phenolic compounds degradation Chemosphere (2022)A. Talaiekhozani et al. Recent advances in photocatalytic removal of organic and inorganic pollutants in air J. Clean. Prod. (2021)D. Castilla-Caballero et al. Solid-state photocatalysis for plastics abatement: a review Mater. Sci. Semicond. Process (2022)D. Martel et al. Pertinent parameters in photo-generation of electrons: comparative study of anatase-based nano-TiO2 suspensions J. Colloid Interface Sci. (2016)M. Hassan et al. Employing TiO2 photocatalysis to deal with landfill leachate: current status and development Chem. Eng. J. (2016)N.A. Mir et al. Photocatalytic degradation of a widely used insecticide Thiamethoxam in aqueous suspension of TiO2: adsorption, kinetics, product analysis and toxicity assessment Sci. Total Environ. 458– (2013)F. Amor et al. Contribution of TiO2 and ZnO nanoparticles to the hydration of Portland cement and photocatalytic properties of High Performance Concrete Case Stud. Constr. Mater. (2022)S.S. Ali et al. Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes Environ. Nanotechnol. Monit. Manag. (2016)M. Daous et al. Gold-modified N-doped TiO2 and N-doped WO3 / TiO2 semiconductors as photocatalysts for UV–visible light destruction of aqueous 2,4,6-trinitrotoluene solution J. Mol. Catal. A Chem. (2014)P. Mazierski et al. Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant Appl. Catal. B. (2016)X. Jiang et al. Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles Catal. Today (2018)R. Fagan et al. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern Mater. Sci. Semicond. Process (2016)Y. Xie et al. TiO2-biochar composites as alternative photocatalyst for stormwater disinfection J. Water Process Eng. (2022)J. Fito et al. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater Sci. Total Environ. (2022)J. Sha et al. Comparison of nano-TiO2 immobilization approaches onto biochar: superiorities of click chemistry strategy and self-acceleration of pollutant degradation J. Environ. Chem. Eng. (2022)D. Guo et al. Synergistic mechanism of biochar-nano TiO2 adsorption-photocatalytic oxidation of toluene Fuel Process. Technol. (2022)D. Mohan et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review Bioresour. Technol. (2014)M.V. Pinna et al. Photooxidation of foramsulfuron: effects of char substances J. Photochem. Photobio. A Chem. (2016)M.V. Pinna et al. Photooxidation of foramsulfuron: effects of char substances J. Photochem. Photobio. A Chem. (2016)V. Makrigianni et al. Preparation, characterization and photocatalytic performance of pyrolytic-tire-char/TiO2 composites, toward phenol oxidation in aqueous solutions Appl. Catal. B. (2015)O. Das et al. Mechanical and flammability characterisations of biochar/polypropylene biocomposites Compos B Eng. (2016)P. Srinivasan et al. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications Sci. Total Environ. 512– (2015)V. Hansen et al. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: a farm case study J. Environ. Manag. (2017)U. Kamran et al. MnO2-decorated biochar composites of coconut shell and rice husk: an efficient lithium ions adsorption-desorption performance in aqueous media Chemosphere (2020)S. Xu et al. A highly efficient strategy for enhancing the adsorptive and magnetic capabilities of biochar using Fenton oxidation Bioresour. Technol. (2020)S. Xiong et al. Factors study for the removal of epoxiconazole in water by common biochars Biochem Eng. J. (2020)T. Wang et al. Insights into the mechanism of co-adsorption between tetracycline and nano-TiO2 on coconut shell porous biochar in binary system Adv. Powder Technol. (2021)S. Zhang et al. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent Chemosphere (2018)X.L. García-Montelongo et al. Photo-oxidative degradation of TiO2/polypropylene films Mater. Res Bull. (2014)F.U. Haider et al. Biochar application for remediation of organic toxic pollutants in contaminated soils; an update Ecotoxicol. Environ. Saf. (2022)H. Tang et al. Engineered biochar effects on soil physicochemical properties and biota communities: a critical review Chemosphere (2023)D. Castilla-Caballero et al. Experimental data on the production and characterization of biochars derived from coconut-shell wastes obtained from the Colombian Pacific Coast at low temperature pyrolysis Data Brief. (2020)E.N. Yargicoglu et al. Physical and chemical characterization of waste wood derived biochars Waste Manag. (2015)A. Omri et al. Synthesis, surface characterization and photocatalytic activity of TiO2 supported on almond shell activated carbon J. Mater. Sci. Technol. (2014)M. Smith et al. Improving the deconvolution and interpretation of XPS spectra from chars by ab initio calculations Carbon N. Y (2016)W. Suliman et al. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties Biomass Bioenergy (2016)W. Suliman et al. Modification of biochar surface by air oxidation: role of pyrolysis temperature Biomass-.-. Bioenergy (2016)X. He et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues Energy (2018)J.H. Yuan et al. The forms of alkalis in the biochar produced from crop residues at different temperatures Bioresour. Technol. (2011)R.J.J. Gilham et al. On the applicability of XPS for quantitative total organic and elemental carbon analysis of airborne particulate matter Atmos. Environ. (2008)P. Zhang et al. Surface properties of activated sludge-derived biochar determine the facilitating effects on Geobacter co-cultures Water Res (2018)H. Zhang et al. Effect of feedstock and pyrolysis temperature on properties of biochar governing end use efficacy Biomass Bioenergy (2017)J. Jin et al. SrCO3-modified brookite/anatase TiO2 heterophase junctions with enhanced activity and selectivity of CO2 photoreduction to CH4 Appl. Surf. Sci. (2019)L. Lu et al. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange Chemosphere (2019)O. Ola et al. Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction J. Photochem. Photobiol. C: Photochem. Rev. (2015)Z. Sun et al. Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst Renew. Energy (2022)R. Djellabi et al. Carbonaceous biomass-titania composites with Ti–O–C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light Chem. Eng. J. (2019)H. Zhang et al. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices Chemosphere (2017)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALArtículo para repositorio.pdfArtículo para repositorio.pdfDatos básicos (preprint)application/pdf98967https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/1/Art%c3%adculo%20para%20repositorio.pdf4b36ec09c0f3eb5bf89b7fcaf06f9beaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTArtículo para repositorio.pdf.txtArtículo para repositorio.pdf.txtExtracted texttext/plain1671https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/3/Art%c3%adculo%20para%20repositorio.pdf.txtc3ca756d58366b2def57e820e93f7b37MD53THUMBNAILArtículo para repositorio.pdf.jpgArtículo para repositorio.pdf.jpgGenerated Thumbnailimage/jpeg4110https://repositorio.utb.edu.co/bitstream/20.500.12585/12461/4/Art%c3%adculo%20para%20repositorio.pdf.jpgaffb070823394944c300097bb3d70302MD5420.500.12585/12461oai:repositorio.utb.edu.co:20.500.12585/124612023-08-18 00:17:50.024Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=