Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization

A convex mathematical model based on second-order cone programming (SOCP) for the optimal operation in direct current microgrids (DCMGs) with high-level penetration of renewable energies and battery energy storage systems (BESSs) is developed in this paper. The SOCP formulation allows converting the...

Full description

Autores:
Gil-González, Walter
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Cruz-Peragón, Fernando
Alcalá, Gerardo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9356
Acceso en línea:
https://hdl.handle.net/20.500.12585/9356
https://www.mdpi.com/1996-1073/13/7/1703
Palabra clave:
Second-order cone programming
Economic dispatch problem
Artificial neural networks;
Battery energy storage system
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc/4.0/
id UTB2_338ce2423df5e37c65d15eb5d63f88ff
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9356
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
title Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
spellingShingle Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
Second-order cone programming
Economic dispatch problem
Artificial neural networks;
Battery energy storage system
title_short Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
title_full Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
title_fullStr Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
title_full_unstemmed Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
title_sort Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimization
dc.creator.fl_str_mv Gil-González, Walter
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Cruz-Peragón, Fernando
Alcalá, Gerardo
dc.contributor.author.none.fl_str_mv Gil-González, Walter
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Cruz-Peragón, Fernando
Alcalá, Gerardo
dc.subject.keywords.spa.fl_str_mv Second-order cone programming
topic Second-order cone programming
Economic dispatch problem
Artificial neural networks;
Battery energy storage system
dc.subject.keywords.none.fl_str_mv Economic dispatch problem
Artificial neural networks;
Battery energy storage system
description A convex mathematical model based on second-order cone programming (SOCP) for the optimal operation in direct current microgrids (DCMGs) with high-level penetration of renewable energies and battery energy storage systems (BESSs) is developed in this paper. The SOCP formulation allows converting the non-convex model of economic dispatch into a convex approach that guarantees the global optimum and has an easy implementation in specialized software, i.e., CVX. This conversion is accomplished by performing a mathematical relaxation to ensure the global optimum in DCMG. The SOCP model includes changeable energy purchase prices in the DCMG operation, which makes it in a suitable formulation to be implemented in real-time operation. An energy short-term forecasting model based on a receding horizon control (RHC) plus an artificial neural network (ANN) is used to forecast primary sources of renewable energy for periods of 0.5h. The proposed mathematical approach is compared to the non-convex model and semidefinite programming (SDP) in three simulation scenarios to validate its accuracy and efficiency
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-31T21:37:13Z
dc.date.available.none.fl_str_mv 2020-08-31T21:37:13Z
dc.date.issued.none.fl_str_mv 2020-04-03
dc.date.submitted.none.fl_str_mv 2020-08-31
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703.
dc.identifier.issn.none.fl_str_mv 1996-1073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9356
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/1996-1073/13/7/1703
dc.identifier.doi.none.fl_str_mv 10.3390/en13071703
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio UTB
identifier_str_mv Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703.
1996-1073
10.3390/en13071703
Universidad Tecnológica de Bolívar
Repositorio UTB
url https://hdl.handle.net/20.500.12585/9356
https://www.mdpi.com/1996-1073/13/7/1703
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.publisher.discipline.spa.fl_str_mv Ingeniería Eléctrica
dc.source.spa.fl_str_mv Energies; Vol. 13, Núm. 7 (2020)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/2/10.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/3/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/4/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/7/10.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/8/10.pdf.jpg
bitstream.checksum.fl_str_mv 209a5233bc40b172f311aa54ec9a283b
24013099e9e6abb1575dc6ce0855efd5
e20ad307a1c5f3f25af9304a7a7c86b6
ed5ab51c49c4c2300b4ba34a9faec1b0
0901f2a8e9d8d7ef1da021dfa8be14db
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021724374564864
spelling Gil-González, Walterce1f5078-74c6-4b5c-b56a-784f85e52a08Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Noreña, Luis Fernandob2728c9a-1fd6-47c8-b7bc-d95ea0252207Cruz-Peragón, Fernando096faa6a-6c28-48ea-b5ae-37dc9d666644Alcalá, Gerardo04e0a0ab-2e1e-47e9-aa21-c0cb13133579Cartagena de Indias2020-08-31T21:37:13Z2020-08-31T21:37:13Z2020-04-032020-08-31Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703.1996-1073https://hdl.handle.net/20.500.12585/9356https://www.mdpi.com/1996-1073/13/7/170310.3390/en13071703Universidad Tecnológica de BolívarRepositorio UTBA convex mathematical model based on second-order cone programming (SOCP) for the optimal operation in direct current microgrids (DCMGs) with high-level penetration of renewable energies and battery energy storage systems (BESSs) is developed in this paper. The SOCP formulation allows converting the non-convex model of economic dispatch into a convex approach that guarantees the global optimum and has an easy implementation in specialized software, i.e., CVX. This conversion is accomplished by performing a mathematical relaxation to ensure the global optimum in DCMG. The SOCP model includes changeable energy purchase prices in the DCMG operation, which makes it in a suitable formulation to be implemented in real-time operation. An energy short-term forecasting model based on a receding horizon control (RHC) plus an artificial neural network (ANN) is used to forecast primary sources of renewable energy for periods of 0.5h. The proposed mathematical approach is compared to the non-convex model and semidefinite programming (SDP) in three simulation scenarios to validate its accuracy and efficiency15 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Energies; Vol. 13, Núm. 7 (2020)Economic dispatch of renewable generators and BESS in DC microgrids using second-order cone optimizationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Second-order cone programmingEconomic dispatch problemArtificial neural networks;Battery energy storage systemInvestigadoresCampus TecnológicoIngeniería EléctricaZou, D.; Li, S.; Kong, X.; Ouyang, H.; Li, Z. Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy. Appl. Energy 2019, 237, 646–670. [CrossRef]Zia, M.F.; Elbouchikhi, E.; Benbouzid, M.; Guerrero, J.M. Energy management system for an islanded microgrid with convex relaxation. IEEE Trans. Ind. Appl. 2019, 55, 7175–7185. [CrossRef]Lotfi, H.; Khodaei, A. AC versus DC microgrid planning. IEEE Trans. Smart Grid 2015, 8, 296–304. [CrossRef]Quashie, M.; Marnay, C.; Bouffard, F.; Joós, G. Optimal planning of microgrid power and operating reserve capacity. Appl. Energy 2018, 210, 1229–1236. [CrossRef]Hu, J.; Shan, Y.; Xu, Y.; Guerrero, J.M. A coordinated control of hybrid ac/dc microgrids with PV-wind-battery under variable generation and load conditions. Int. J. Electr. Power Energy Syst. 2019, 104, 583–592. [CrossRef]Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.; Orozco-Henao, C.; Serra, F. Economic Dispatch of BESS and Renewable Generators in DC Microgrids Using Voltage-Dependent Load Models. Energies 2019, 12, 4494. [CrossRef]Strunz, K.; Abbasi, E.; Huu, D.N. DC microgrid for wind and solar power integration. IEEE Trans. Emerg. Sel. Top. Power Electron. 2013, 2, 115–126. [CrossRef]Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [CrossRef]Montoya, O.D.; Gil-González, W.; Garces, A. Optimal power flow on DC microgrids: A quadratic convex approximation. IEEE Trans. Circuits Syst. II 2018, 66, 1018–1022. [CrossRef]Montoya, O.D.; Grajales, A.; Garces, A.; Castro, C.A. Distribution systems operation considering energy storage devices and distributed generation. IEEE Lat. Am. Trans. 2017, 15, 890–900. [CrossRef]Rahmani-Andebili, M. Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization. Renew. Energy 2017, 113, 1462–1471. [CrossRef]Rodríguez, F.; Fleetwood, A.; Galarza, A.; Fontán, L. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control. Renew. Energy 2018, 126, 855–864. [CrossRef]Zheng, Y.; Hill, D.J.; Dong, Z.Y. Multi-agent optimal allocation of energy storage systems in distribution systems. IEEE Trans. Sustain. Energy 2017, 8, 1715–1725. [CrossRef]Lakshmi, S.; Ganguly, S. Multi-objective planning for the allocation of PV-BESS integrated open UPQC for peak load shaving of radial distribution networks. J. Energy Storage 2019, 22, 208–218. [CrossRef] Energies 2020, 13, 1703 15 of 15Yamchi, H.B.; Shahsavari, H.; Kalantari, N.T.; Safari, A.; Farrokhifar, M. A cost-efficient application of different battery energy storage technologies in microgrids considering load uncertainty. J. Energy Storage 2019, 22, 17–26. [CrossRef]Zheng, Y.; Dong, Z.Y.; Luo, F.J.; Meng, K.; Qiu, J.; Wong, K.P. Optimal allocation of energy storage system for risk mitigation of DISCOs with high renewable penetrations. IEEE Trans. Power Syst. 2013, 29, 212–220. [CrossRef]Lee, G.Y.; Ko, B.S.; Cho, J.; Kim, R.Y. A Distributed Control Method Based on a Voltage Sensitivity Matrix in DC Microgrids with Low-Speed Communication. IEEE Trans. Smart Grid 2019, 10, 3809–3817. [CrossRef]Das, C.K.; Bass, O.; Kothapalli, G.; Mahmoud, T.S.; Habibi, D. Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm. Appl. Energy 2018, 232, 212–228. [CrossRef]Grisales, L.F.; Grajales, A.; Montoya, O.D.; Hincapie, R.A.; Granada, M.; Castro, C.A. Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach. IEEE Lat. Am. Trans. 2017, 15, 1084–1090. [CrossRef]Montoya-Giraldo, O.D.; Gil-González, W.J.; Garcés-Ruíz, A. Optimal Power Flow for radial and mesh grids using semidefinite programming. Tecno Lógicas 2017, 20, 29–42. [CrossRef]Kim, S.; Kojima, M. Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl. 2003, 26, 143–154. [CrossRef]Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [CrossRef]Hindi, H. A tutorial on convex optimization. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 4, pp. 3252–3265.Alizadeh, F.; Goldfarb, D. Second-order cone programming. Math. Program. 2003, 95, 3–51. [CrossRef]Alzalg, B.M. Stochastic second-order cone programming: Applications models. Appl. Math. Model. 2012, 36, 5122–5134. doi:10.1016/j.apm.2011.12.053. [CrossRef]Khashei, M.; Bijari, M. An artificial neural network (p, d, q) model for time series forecasting. Expert Syst. Appl. 2010, 37, 479–489. [CrossRef]Data, S.S.R. Time Series of Solar Radiation Data. Available online: http://www.soda-pro.com/ (accessed on 5 July 2019).IEEE. Guide for Optimizing the Performance and Life of Lead-Acid Batteries in Remote Hybrid Power Systems—Redline; IEEE Std 1561-2019 (Revision of IEEE Std 1561-2007)—Redline; IEEE: New York, NY, USA, 2019; pp. 1–67.Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. 2014. Available online: http://cvxr.com/cvx (accessed on 6 January 2020).Guimaraes, D.A.; Floriano, G.H.F.; Chaves, L.S. A tutorial on the CVX system for modeling and solving convex optimization problems. IEEE Lat. Am. Trans. 2015, 13, 1228–1257. [CrossRef]http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL10.pdf10.pdfArtículo principalapplication/pdf528454https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/2/10.pdf209a5233bc40b172f311aa54ec9a283bMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/3/license_rdf24013099e9e6abb1575dc6ce0855efd5MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/4/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD54TEXT10.pdf.txt10.pdf.txtExtracted texttext/plain41497https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/7/10.pdf.txted5ab51c49c4c2300b4ba34a9faec1b0MD57THUMBNAIL10.pdf.jpg10.pdf.jpgGenerated Thumbnailimage/jpeg87035https://repositorio.utb.edu.co/bitstream/20.500.12585/9356/8/10.pdf.jpg0901f2a8e9d8d7ef1da021dfa8be14dbMD5820.500.12585/9356oai:repositorio.utb.edu.co:20.500.12585/93562023-05-26 11:14:38.641Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=