Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil

This study delves into the agricultural landscape of Bahia, Brazil, employing the Mask R-CNN deep learning model with satellite imagery to detect three crop growth stages (early, mid-growth and maturity stage). This model is suited to the region’s complex terrain and diverse crop patterns, providing...

Full description

Autores:
Camacho-De Angulo, Yineth Viviana
Arrechea-Castillo, Darwin Alexis
Cantero-Mosquera, Yessica Carolina
Solano-Correa, Yady Tatiana
Roisenberg, Mauro
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12733
Acceso en línea:
https://hdl.handle.net/20.500.12585/12733
Palabra clave:
Crops Growth
Deep Learning
Image Instance Segmentation
Remote Sensing
Mask R-CNN
LEMB
Rights
closedAccess
License
http://purl.org/coar/access_right/c_14cb
id UTB2_3147b205ef8147cfeb27ebefe237c842
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12733
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
title Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
spellingShingle Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
Crops Growth
Deep Learning
Image Instance Segmentation
Remote Sensing
Mask R-CNN
LEMB
title_short Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
title_full Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
title_fullStr Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
title_full_unstemmed Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
title_sort Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil
dc.creator.fl_str_mv Camacho-De Angulo, Yineth Viviana
Arrechea-Castillo, Darwin Alexis
Cantero-Mosquera, Yessica Carolina
Solano-Correa, Yady Tatiana
Roisenberg, Mauro
dc.contributor.author.none.fl_str_mv Camacho-De Angulo, Yineth Viviana
Arrechea-Castillo, Darwin Alexis
Cantero-Mosquera, Yessica Carolina
Solano-Correa, Yady Tatiana
Roisenberg, Mauro
dc.subject.keywords.spa.fl_str_mv Crops Growth
Deep Learning
Image Instance Segmentation
Remote Sensing
Mask R-CNN
topic Crops Growth
Deep Learning
Image Instance Segmentation
Remote Sensing
Mask R-CNN
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This study delves into the agricultural landscape of Bahia, Brazil, employing the Mask R-CNN deep learning model with satellite imagery to detect three crop growth stages (early, mid-growth and maturity stage). This model is suited to the region’s complex terrain and diverse crop patterns, providing accurate instance segmentation crucial for monitoring crop development. Remarkable results have been achieved with a limited dataset of just 54 images for training, underscoring the model’s efficiency in scenarios where extensive data collection is challenging. The validation metric chosen for this study is the Intersection over Union (IoU), preferred for its ability to quantify the pixel-wise overlap between the predicted and actual segmentations, offering a clear measure of accuracy in spatial contexts. An IoU of 90% was obtained, demonstrating Mask R-CNN’s robustness and potential for precision agriculture in challenging environments.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-12T14:02:50Z
dc.date.available.none.fl_str_mv 2024-09-12T14:02:50Z
dc.date.issued.none.fl_str_mv 2024-07-12
dc.date.submitted.none.fl_str_mv 2024-09-11
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8544
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/lecture
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_c94f
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Y. V. Camacho-De Angulo; D.A. Arrechea-Castillo; Y. C. Cantero-Mosquera; Y. T. Solano-Correa; M. Roisenberg, "Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642298.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12733
dc.identifier.doi.none.fl_str_mv 10.1109/IGARSS53475.2024.10642298
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Y. V. Camacho-De Angulo; D.A. Arrechea-Castillo; Y. C. Cantero-Mosquera; Y. T. Solano-Correa; M. Roisenberg, "Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642298.
10.1109/IGARSS53475.2024.10642298
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12733
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
eu_rights_str_mv closedAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 4 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ciencias Básicas
dc.source.spa.fl_str_mv EEE International Geoscience and Remote Sensing Symposium (IGARSS)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/1/2024-C-Detection%20of%20Different%20Crop%20Growth%20Stages%20by%20Applying%20Deep%20Learning%20Over%20Sentinel-2%20Images%20of%20Bah%c3%ada%2c%20Brazil.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/3/2024-C-Detection%20of%20Different%20Crop%20Growth%20Stages%20by%20Applying%20Deep%20Learning%20Over%20Sentinel-2%20Images%20of%20Bah%c3%ada%2c%20Brazil.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/4/2024-C-Detection%20of%20Different%20Crop%20Growth%20Stages%20by%20Applying%20Deep%20Learning%20Over%20Sentinel-2%20Images%20of%20Bah%c3%ada%2c%20Brazil.pdf.jpg
bitstream.checksum.fl_str_mv 997be1652b87e78e87e4d21e2f918c33
e20ad307a1c5f3f25af9304a7a7c86b6
2284ad630c1c5ec892e075e049505a0e
40cd080675789292306797dd93c32367
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021773521321984
spelling Camacho-De Angulo, Yineth Vivianadf97ad9f-47e5-45c8-922c-d1e2b12c9708Arrechea-Castillo, Darwin Alexis93ac81fe-17eb-4bd1-a2fc-f39f13cc9af2Cantero-Mosquera, Yessica Carolinae09375ab-1dbb-4de9-8570-abe851be1ceeSolano-Correa, Yady Tatiana64432ee7-11fa-4bfb-b643-143125ef82c1Roisenberg, Maurob82483b1-1b24-4356-8b2f-305190e1ae822024-09-12T14:02:50Z2024-09-12T14:02:50Z2024-07-122024-09-11Y. V. Camacho-De Angulo; D.A. Arrechea-Castillo; Y. C. Cantero-Mosquera; Y. T. Solano-Correa; M. Roisenberg, "Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil," in 2024 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Athens, Greece, Jul. 2024. DOI: 10.1109/IGARSS53475.2024.10642298.https://hdl.handle.net/20.500.12585/1273310.1109/IGARSS53475.2024.10642298Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis study delves into the agricultural landscape of Bahia, Brazil, employing the Mask R-CNN deep learning model with satellite imagery to detect three crop growth stages (early, mid-growth and maturity stage). This model is suited to the region’s complex terrain and diverse crop patterns, providing accurate instance segmentation crucial for monitoring crop development. Remarkable results have been achieved with a limited dataset of just 54 images for training, underscoring the model’s efficiency in scenarios where extensive data collection is challenging. The validation metric chosen for this study is the Intersection over Union (IoU), preferred for its ability to quantify the pixel-wise overlap between the predicted and actual segmentations, offering a clear measure of accuracy in spatial contexts. An IoU of 90% was obtained, demonstrating Mask R-CNN’s robustness and potential for precision agriculture in challenging environments.4 páginasapplication/pdfengEEE International Geoscience and Remote Sensing Symposium (IGARSS)Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazilinfo:eu-repo/semantics/lectureinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_c94fhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_8544Crops GrowthDeep LearningImage Instance SegmentationRemote SensingMask R-CNNLEMBinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCartagena de IndiasCiencias BásicasInvestigadoresD. S. Bullock, M. Boerngen, H. Tao, B. Maxwell, J. D. Luck, L. Shiratsuchi, L. Puntel, and N. F. Martin, “The data-intensive farm management project: changing agronomic research through on-farm precision experimentation,” Agronomy journal, vol. 111, no. 6, pp. 2736–2746, 2019.K. Malhotra and M. Firdaus, “Application of artificial intelligence in iot security for crop yield prediction,” ResearchBerg Review of Science and Technology, vol. 2, no. 1, pp. 136–157, 2022.R. P. Sishodia, R. L. Ray, and S. K. Singh, “Applications of remote sensing in precision agriculture: A review,” Remote Sensing, vol. 12, no. 19, p. 3136, 2020.A. Robinson, Bahia: The Heart of Brazil’s Northeast. Bradt Travel Guides, 2010.E. Benami, Shaping the Producer’s Problem: Essays on Land-Use Zoning and Certification in the Sustainability of Brazilian Oil Palm and Coffee. Stanford University, 2018.K. G. Eng˚as, J. Z. Raja, and I. F. Neufang, “Decoding technological frames: An exploratory study of access to and meaningful engagement with digital technologies in agriculture,” Technological Forecasting and Social Change, vol. 190, p. 122405, 2023Y. T. Solano-Correa, K. Meshkini, F. Bovolo, and L. Bruzzone, “Automatic large-scale precise mapping and monitoring of agricultural fields at country level with sentinel-2 sits,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 3131–3145, 2022.Y. T. Solano-Correa, F. Bovolo, and L. Bruzzone, “A semi-supervised crop-type classification based on sentinel-2 ndvi satellite image time series and phenological parameters,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 457–460, 2019.D.-C. Hsiou, F. Huang, F. J. Tey, T.-Y. Wu, and Y.-C. Lee, “An automated crop growth detection method using satellite imagery data,” Agriculture, vol. 12, no. 4, p. 504, 2022.CVAT.ai Corporation, “Computer Vision Annotation Tool (CVAT).”W. Abdulla, “Mask r-cnn for object detection and instance segmentation on keras and tensorflow.” https://github.com/matterport/MaskRCNN, 2017.T. N. Carlson and D. A. Ripley, “On the relation between NDVI, fractional vegetation cover, and leaf area index,” vol. 62, no. 3, pp. 241–252.http://purl.org/coar/resource_type/c_c94fORIGINAL2024-C-Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil.pdf2024-C-Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil.pdfapplication/pdf5950486https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/1/2024-C-Detection%20of%20Different%20Crop%20Growth%20Stages%20by%20Applying%20Deep%20Learning%20Over%20Sentinel-2%20Images%20of%20Bah%c3%ada%2c%20Brazil.pdf997be1652b87e78e87e4d21e2f918c33MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXT2024-C-Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil.pdf.txt2024-C-Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil.pdf.txtExtracted texttext/plain17323https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/3/2024-C-Detection%20of%20Different%20Crop%20Growth%20Stages%20by%20Applying%20Deep%20Learning%20Over%20Sentinel-2%20Images%20of%20Bah%c3%ada%2c%20Brazil.pdf.txt2284ad630c1c5ec892e075e049505a0eMD53THUMBNAIL2024-C-Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil.pdf.jpg2024-C-Detection of Different Crop Growth Stages by Applying Deep Learning Over Sentinel-2 Images of Bahía, Brazil.pdf.jpgGenerated Thumbnailimage/jpeg9474https://repositorio.utb.edu.co/bitstream/20.500.12585/12733/4/2024-C-Detection%20of%20Different%20Crop%20Growth%20Stages%20by%20Applying%20Deep%20Learning%20Over%20Sentinel-2%20Images%20of%20Bah%c3%ada%2c%20Brazil.pdf.jpg40cd080675789292306797dd93c32367MD5420.500.12585/12733oai:repositorio.utb.edu.co:20.500.12585/127332024-09-13 00:18:24.112Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=