Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review
Filling and emptying processes are common maneuvers while operating, controlling and managing water pipeline systems. Currently, these operations are executed following recommendations from technical manuals and pipe manufacturers; however, these recommendations have a lack of understanding about th...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9147
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9147
- Palabra clave:
- Air-water
Emptying
Filling
Transient flow
Water distribution system
Distribution system
Flow modeling
Hydraulic structure
Literature review
Nnumerical model
Pipeline
Transient flow
Uncertainty analysis
Water column
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2f91bb558ecf0ff4fb7bfd3ec2323d8a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9147 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review |
title |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review |
spellingShingle |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review Air-water Emptying Filling Transient flow Water distribution system Distribution system Flow modeling Hydraulic structure Literature review Nnumerical model Pipeline Transient flow Uncertainty analysis Water column |
title_short |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review |
title_full |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review |
title_fullStr |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review |
title_full_unstemmed |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review |
title_sort |
Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review |
dc.subject.keywords.none.fl_str_mv |
Air-water Emptying Filling Transient flow Water distribution system Distribution system Flow modeling Hydraulic structure Literature review Nnumerical model Pipeline Transient flow Uncertainty analysis Water column |
topic |
Air-water Emptying Filling Transient flow Water distribution system Distribution system Flow modeling Hydraulic structure Literature review Nnumerical model Pipeline Transient flow Uncertainty analysis Water column |
description |
Filling and emptying processes are common maneuvers while operating, controlling and managing water pipeline systems. Currently, these operations are executed following recommendations from technical manuals and pipe manufacturers; however, these recommendations have a lack of understanding about the behavior of these processes. The application of mathematical models considering transient flows with entrapped air pockets is necessary because a rapid filling operation can cause pressure surges due to air pocket compressions, while an uncontrolled emptying operation can generate troughs of sub-atmospheric pressure caused by air pocket expansion. Depending on pipe and installation conditions, either situation can produce a rupture of pipe systems. Recently, reliable mathematical models have been developed by different researchers. This paper reviews and compares various mathematical models to simulate these processes. Water columns can be analyzed using a rigid water column model, an elastic water model, or 2D/3D CFD models; air–water interfaces using a piston-flow model or more complex models; air pockets through a polytropic model; and air valves using an isentropic nozzle flow or similar approaches. This work can be used as a starting point for planning filling and emptying operations in pressurized pipelines. Uncertainties of mathematical models of two-phases flow concerning to a non-variable friction factor, a polytropic coefficient, an air pocket sizes and an air valve behavior are identified. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:33:03Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_efa0 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/review |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo de revisión |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Urban Water Journal; Vol. 16, Núm. 4; pp. 299-311 |
dc.identifier.issn.none.fl_str_mv |
1573062X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9147 |
dc.identifier.doi.none.fl_str_mv |
10.1080/1573062X.2019.1669188 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56074282700 57193337460 57193863782 15220062200 |
identifier_str_mv |
Urban Water Journal; Vol. 16, Núm. 4; pp. 299-311 1573062X 10.1080/1573062X.2019.1669188 Universidad Tecnológica de Bolívar Repositorio UTB 56074282700 57193337460 57193863782 15220062200 |
url |
https://hdl.handle.net/20.500.12585/9147 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
publisher.none.fl_str_mv |
Taylor and Francis Ltd. |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073624938&doi=10.1080%2f1573062X.2019.1669188&partnerID=40&md5=7bb685cea728d54bf8cab7352b6d9b52 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9147/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021598260232192 |
spelling |
2020-03-26T16:33:03Z2020-03-26T16:33:03Z2019Urban Water Journal; Vol. 16, Núm. 4; pp. 299-3111573062Xhttps://hdl.handle.net/20.500.12585/914710.1080/1573062X.2019.1669188Universidad Tecnológica de BolívarRepositorio UTB56074282700571933374605719386378215220062200Filling and emptying processes are common maneuvers while operating, controlling and managing water pipeline systems. Currently, these operations are executed following recommendations from technical manuals and pipe manufacturers; however, these recommendations have a lack of understanding about the behavior of these processes. The application of mathematical models considering transient flows with entrapped air pockets is necessary because a rapid filling operation can cause pressure surges due to air pocket compressions, while an uncontrolled emptying operation can generate troughs of sub-atmospheric pressure caused by air pocket expansion. Depending on pipe and installation conditions, either situation can produce a rupture of pipe systems. Recently, reliable mathematical models have been developed by different researchers. This paper reviews and compares various mathematical models to simulate these processes. Water columns can be analyzed using a rigid water column model, an elastic water model, or 2D/3D CFD models; air–water interfaces using a piston-flow model or more complex models; air pockets through a polytropic model; and air valves using an isentropic nozzle flow or similar approaches. This work can be used as a starting point for planning filling and emptying operations in pressurized pipelines. Uncertainties of mathematical models of two-phases flow concerning to a non-variable friction factor, a polytropic coefficient, an air pocket sizes and an air valve behavior are identified. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.Consejo Nacional de Innovación, Ciencia y Tecnología, CONICYT Comisión Asesora de Investigación Científica y Técnica, CAICYTFunding for Oscar E. Coronado-Hernández was covered by Fundación Centro de Estudios Interdisciplinarios Básicos y Aplicados (CEIBA) – Gobernación de Bolívar (Colombia). This study was also supported by the Program Fondecyt Regular [Project 1180660] of the Comisión Nacional de Investigación Científica y Tecnológica (Conicyt), Chile.Recurso electrónicoapplication/pdfengTaylor and Francis Ltd.http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073624938&doi=10.1080%2f1573062X.2019.1669188&partnerID=40&md5=7bb685cea728d54bf8cab7352b6d9b52Hydraulic modeling during filling and emptying processes in pressurized pipelines: a literature reviewinfo:eu-repo/semantics/reviewinfo:eu-repo/semantics/publishedVersionArtículo de revisiónhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_efa0Air-waterEmptyingFillingTransient flowWater distribution systemDistribution systemFlow modelingHydraulic structureLiterature reviewNnumerical modelPipelineTransient flowUncertainty analysisWater columnFuertes Miquel, Vicente S.Coronado Hernández, Óscar EnriqueMora-Meliá D.Iglesias-Rey P.L.Abreu, J., Cabrera, E., Izquierdo, J., García-Serra, J., Flow Modeling in Pressurized Systmes Revisited (1999) Journal of Hydraulic Engineering, 125 (11), pp. 1154-1169Akpan, P.U., Yeung, H., Jones, S., Njoku, H., Mgbemene, C.A., Mathematical Models of Air Vessels for Pressure Transient Control in Water Pipelines - A Review (2014) International Journal of Current Research, 6 (2). , 5267–5272Apollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines (2016) Water, 8, pp. 1-12Arai, K., Yamamoto, K., Transient Analysis of Mixed Free-Surface-Pressurized Flows with Modified Slot Model: Part 1 — Computational Model and Experiment (2003) ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, pp. 2907-2913. , Honolulu, Hawaii(2001) American Water Works Association (AWWA). Manual of Water Supply practices–M51: Air-release, Air-vacuum, and Combination Air Valves, , 1st, Denver, ed. Denver, CO, USABaker, A.J., (1983) Finite Element Computational Fluid Mechanics, , New York, NY: Ed. McGraw-HillBalacco, G., Apollonio, C., Piccinni, A.F., Experimental Analysis of Air Valve Behaviour during Hydraulic Transients (2015) Journal of Applied Water Engineering and Research, 3 (1), pp. 3-11Beecham, S., Lucke, T., Air Water Flows in Building Drainage Systems (2015) Urban Water Journal, 12 (6)Bergant, A., Simpson, A.R., Tijsseling, A.S., Water Hammer with Column Separation: A Historical Review (2006) Journal of Fluids and Structures, 22, pp. 135-171Besharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow Air and Pressure Analysis Im Emptying a Pipeline Containing an Entrapped Air Pocket (2018) Urban Water Journal, 15 (8), pp. 769-779Bousso, S., Daynou, M., Fuamba, M., Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature (2013) Journal of Hydraulic Engineering, 139 (4), pp. 385-396Brunone, B., Golia, U.M., Greco, M., Modeling of Fast Transients by Numerical Methods (1991) Proceedings of Hydrualic Transients with Water Column Separation, , Valencia, Spain: IAHR, and,. InCabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of Liquid Length Variation in Hydraulic Transients (1992) Journal of Hydraulic Research, 118 (12), pp. 1639-1650Carlos, M., Arregui, F.J., Cabrera, E., Palau, C.V., Understanding Air Release through Air Valves (2011) Journal of Hydraulic Engineering, 137 (4), pp. 461-469Chaudhry, M.H., (2014) Applied Hydraulic Transients. Columbia, , SC, USA: SpringerChaudhry, M.H., Reddy, H.P., Mathematical Modeling of Lake Tap Flows (2011) Journal of Hydraulic Engineering, 137 (5), pp. 611-614Coronado-Hernández, O.E., Transient Phenemona during the Emptying Process of Water in Pressurized Pipelines (2019) PhD diss., , Spain: Department of Hydraulic Engineering, Polytechnic University of ValenciaCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Angulo-Hernández, F.N., Emptying Operation of Water Supply Networks (2018) Water, 10 (1), pp. 1-11. , 22), andCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves (2017) Water, 9 (2), pp. 1-15. , 98), andCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., A Parametric Sensitivity Analysis of Numerically Modelled Piston-type Filling and Emptying of an Inclined Pipeline with an Air Valve (2018) 13th International Conference on Pressure Surges, pp. 949-690. , Bordeaux, FranceCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket (2018) Urban Water Journal, 15 (4), pp. 346-352Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J., rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air (2018) Journal of Hydraulic Engineering, 144 (4)Covas, D., Stoianov, I., Ramos, H.M., Graham, N., Maksimovic̀, C., Butler, D., Water Hammer in Pressurized Polyethylene Pipes: Conceptualmodel and Experimental Analysis (2010) Urban Water Journal, 1 (2), pp. 177-197Cunge, J.A., Wegner, M., Numerical Integration of Barre De Saint-Venant’s Flow Equations by Means of Implicit Scheme of Finite Differences (1964) Houille Blanche, 19 (1), pp. 33-39Fontana, N., Galdiero, E., Giugni, M., Pressure Surges Caused by Air Release in Water Pipelines (2016) Journal of Hydraulic Research, 54 (4), pp. 461-472Fuertes-Miquel, V.S., Hydraulic Transients with Entrapped Air Pockets (2001) PhD diss., , Department of Hydraulic Engineering, Polytechnic University of Valencia, SpainFuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient Phenomena during the Emptying Process of a Single Pipe with Water-air Interaction (2019) Journal of Hydraulic Research, , 57 (3): 318–326Fuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G., Numerical Modelling of Pipelines with Air Pockets and Air Valves (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061García-Todolí, S., Iglesias-Rey, P.L., Mora-Meliá, D., Martínez-Solano, F.J., Fuertes-Miquel, V.S., Computational Determination of Air Valves Capacity Using CFD Techniques (2018) Water, 10 (10)Ghidaou, M., Karney, B.W., Equivalent Differential Equations In Fixed-Grid Characteristics Method (1994) Journal of Hydraulic Engineering, 120 (10), pp. 1159-1175Ghidaoui, M.S., On the Fundamental Equations of Water Hammer (2004) Urban Water Journal, 1 (2), pp. 71-83Graze, H.R., Megler, V., Hartmann, S., Thermodynamic Behaviour of Entrapped Air in an Air Chamber (1996) Proceedings of the 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, pp. 549-560. , Boldy A.P., (ed), and,. Harrogate, UK, edited byGuinot, V., The Discontinuous Profile Method for Simulating Two-phase Flow in Pipes Using the Single Component Approximation (2001) International Journal for Numerical Methods in Fluids, 37 (3), pp. 341-359Guinot, V., (2003) Godunov-type Schemes: An Introduction for Engineers, , Amsterdam, The Netherlands: ElsevierHamam, M.A., McCorquodale, J.A., Transient Conditions in the Transition from Gravity to Surcharged Sewer Flow (1982) Canadian Journal of Civil Engineering, 9, pp. 189-196Hou, Q., Tijsseling, A., Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., van ’t Westende, J., Experimental Investigation on Rapid Filling of a Large-Scale Pipeline (2014) Journal of Hydraulic Engineering, 140 (11)Hou, Q., Zhang, L., Tijsseling, A.S., Kruisbrink, A.C.H., Rapid Filling of Pipelines with the SPH Particle Method (2012) Procedia Engineering, 31, pp. 38-43Iglesias-Rey, P.L., Fuertes-Miquel, V.S., García-Mares, F.J., Martínez-Solano, F.J., Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves (2014) 16th Conference on Water Distribution System Analysis, WDSA 2014, pp. 1412-1419. , Bari, ItalyIssa, R., Kempf, M., Simulation of Slug Flow in Horizontal and Nearly Horizontal Pipes with the Two-fluid Model (2003) International Journal of Multiphase Flow, 29 (1), pp. 69-95Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., García-Serra, J., Pipeline Start-up with Entrapped Air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., Van’t Westende, J.M.C., Emptying of Large-scale Pipeline by Pressurized Air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100Lee, N.H., Effect of Pressurization and Expulsion of Entrapped Air in Pipelines (2005) PhD diss., , School of Civil and Environmental Engineering, Georgia Institute of Technology, USALeon, A., Ghidaoui, M., Schmidt, A., Garcia, M., A Robust Two-equation Model for Transient-mixed Flows (2010) Journal of Hydraulic Research, 48 (1), pp. 44-56Li, J., McCorquodale, J.A., Modeling Mixed Flow in Storm Sewers (1999) Journal of Hydraulic Engineering, 125 (11), pp. 1170-1180Lingireddy, S., Wood, D.J., Zloczower, N., Pressure Surges in Pipeline Systems Resulting from Air Releases (2014) Journal AWWA, 96 (7), p. 88Liou, C., Hunt, W.A., Filling of Pipelines with Undulating Elevation Profiles (1996) Journal of Hydraulic Engineering, 122 (10), pp. 534-539Liu, D., Zhou, L., Karney, B., Zhang, Q., Ou, C., Rigid-plug Elastic-water Model for Transient Pipe Flow with Entrapped Air Pocket (2011) Journal of Hydraulic Research, 49 (6), pp. 799-803Liu, J., Zhang, J., Yu, X., Analytical and Numerical Investigation on the Dynamic Characteristics of Entrapped Air in a Rapid Filling Pipe (2018) Journal of Water Supply: Research and Technology–AQUA, 67 (2), pp. 137-146Malekpour, A., Karney, B.W., Rapid Filling Analysis of Pipelines with Undulating Profiles by the Method of Characteristics (2011) ISRN Applied Mathematics, 2011 (Article ID 930460), p. 16Malekpour, A., Karney, B.W., Nault, J., Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach (2016) Journal of Hydraulic Engineering, 142 (2)Martin, C.S., Entrapped Air in Pipelines (1976) Proceedings of the Second International Conference on Pressure Surges, , London, UK:. InMartino, G., Fontana, N., Giugni, M., Transient Flow Caused by Air Expulsion through an Orifice (2001) Journal of Hydraulic Engineering, 134 (9), pp. 1395-1399Martins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C., CFD Modeling of Transient Flow in Pressurized Pipes (2016) Computers & Fluids, 126, pp. 129-140Martins, N.M.C., Delgado, J.N., Ramos, D.I.C., Covas, H.M., Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model (2017) Journal of Hydraulic Research, 54 (4), pp. 506-518Martins, S.C., Ramos, H.M., Almeida, A.B., Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems (2015) Journal of Hydraulic Research, 53 (5), pp. 678-686Mays, L., (1999) Hydraulic Desing Handbook, , New York, USA: Ed. McGraw-HillMcInnis, D.A., Karney, B.W., Axworthy, D.H., Efficient Valve Representation in Fixed-Grid Characteristics Method (1997) Journal of Hydraulic Engineering, 123 (8), pp. 709-718Ramezani, L., Karney, B., Water Column Separation and Cavity Collapse for Pipelines Protected with Air Vacuum Valves: Understanding the Essential Wave Process (2017) Journal of Hydraulic Engineering, 143 (12)Ramezani, L., Karney, B., Malekpour, A., The Challenge of Air Valves: A Selective Critical Literature Review (2015) Journal of Water Resources Planning and Management, 141 (10)Ramezani, L., Karney, B., Ma-lekpour, A., Encouraging Effective Air Management in Water Pipelines: A Critical Review (2016) Journal of Water Resources Planning and Management, 142 (12)Shimada, M., Brown, J.M.B., Vardy, A.E., Interpolation Errors in Rectangular and Diamond Characteristic Grids (2008) Journal of Hydraulic Engineering, 134 (10), pp. 1480-1490Stephenson, D., Effects of Air Valves and Pipework on Water Hammer Pressures (1997) Journal of Transportation Engineering, 123 (2), pp. 101-106Tijsseling, A., Hou, Q., Bozkuş, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) Journal of Pressure Vessel Technology, 138 (3). , Paper 031301,): 1–11Tran, P., Pressure Transients Caused by Air-Valve Closure while Filling Pipelines (2017) Journal of Hydraulic Engineering, 143 (2)Trindade, B., Vasconcelos, J.G., Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions (2006) Journal of Hydraulic Engineering, 139 (9). , 921–934Vasconcelos, J.G., Klaver, P.R., Lautenbach, D.J., Flow Regime Transition Simulation Incorporating Entrapped Air Pocket Effects (2015) Urban Water Journal, 12 (6)Vasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) Journal of Hydraulic Engineering, 134 (7), pp. 984-992Wang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., Xu, C., CFD Approach for Column Separation in Water Pipelines (2016) Journal of Hydraulic Engineering, , Just ReleasedWang, L., Wang, F., Karney, B., Malekpour, A., Numerical Investigation of Rapid Filling in Bypass Pipelines (2017) Journal of Hydraulic Research, 55 (5), pp. 647-656Wang, L., Wang, F., Lei, X., Investigation on Friction Models for Simulation of Pipeline Filling Transients (2018) Journal of Hydraulic Research, , Article PressWatt, C.S., Application of Finite Element Method to Unsteady Flow Problems (1975) PhD diss., , England: Suntherland PolytechnicWylie, E., Streeter, V., (1993) Fluid Transients in Systems, , Englewood Cliffs, NJ: Ed. Prentice HallYang, K., Practical Method to Prevent Liquid-column Separation (2001) Journal of Hydraulic Engineering, 127 (7), pp. 620-623Zhou, F., Hicks, M., Steffler, P.M., Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634Zhou, L., Liu, D., Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe (2013) Journal of Hydraulic Research, 51 (4), pp. 469-474Zhou, L., Liu, D., Karney, B., Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline (2013) Journal of Hydraulic Engineering, 139 (9), pp. 949-959Zhou, L., Liu, D., Karney, B., Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pocket (2013) Journal of Hydraulic Engineering, 139 (10), pp. 1041-1051Zhou, L., Liu, D., Karney, B., Zhang, Q., Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines (2011) Journal of Hydraulic Engineering, 137 (12), pp. 1686-1692Zhou, L., Liu, D., Ou, C., Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140Zhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S., Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline (2018) Journal of Hydraulic Engineering, 144 (8)Zhou, L., Pan, T., Wang, H., Liu, D., Wang, P., Rapid Air Expulsion through an Orifice in a Vertical Water Pipe (2019) Journal of Hydraulic Research, , 57 (3): 307–317http://purl.org/coar/resource_type/c_dcae04bcTHUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9147/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9147oai:repositorio.utb.edu.co:20.500.12585/91472023-05-26 09:44:20.368Repositorio Institucional UTBrepositorioutb@utb.edu.co |