Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric

Let f : M → M be a continuous map on a compact metric space M equipped with a fixed metric d, and let τ be the topology on M induced by d. We denote by M(τ) the set consisting of all metrics on M that are equivalent to d. Let mdimM(M,d,f) and mdimH(M,d,f ) be, respectively, the metric mean dimension...

Full description

Autores:
Muentes Acevedo, Jeovanny de Jesus
Becker, Alex Jenaro
Baraviera, Alexandre
Scopel, Érick
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12713
Acceso en línea:
https://hdl.handle.net/20.500.12585/12713
Palabra clave:
Mean topological dimension
Metric mean dimension
Mean Hausdorff dimension
Topological entropy
Box dimension
Hausdorff dimension
LEMB
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id UTB2_2ebc72e8d70fdd81d813dba7f5e49078
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12713
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
title Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
spellingShingle Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
Mean topological dimension
Metric mean dimension
Mean Hausdorff dimension
Topological entropy
Box dimension
Hausdorff dimension
LEMB
title_short Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
title_full Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
title_fullStr Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
title_full_unstemmed Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
title_sort Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
dc.creator.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
Becker, Alex Jenaro
Baraviera, Alexandre
Scopel, Érick
dc.contributor.author.none.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
Becker, Alex Jenaro
Baraviera, Alexandre
Scopel, Érick
dc.subject.keywords.spa.fl_str_mv Mean topological dimension
Metric mean dimension
Mean Hausdorff dimension
Topological entropy
Box dimension
Hausdorff dimension
topic Mean topological dimension
Metric mean dimension
Mean Hausdorff dimension
Topological entropy
Box dimension
Hausdorff dimension
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Let f : M → M be a continuous map on a compact metric space M equipped with a fixed metric d, and let τ be the topology on M induced by d. We denote by M(τ) the set consisting of all metrics on M that are equivalent to d. Let mdimM(M,d,f) and mdimH(M,d,f ) be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f) and mdimH(M,d,f) depend on the metric d chosen for M. In this work, we will prove that, for a fixed dynamical system f : M → M, the functions mdimM(M, f ) : M(τ) → R∪ {∞} and mdimH(M,f) : M(τ ) → R∪ {∞} are not continuous, where mdimM(M,f)(ρ) = mdimM(M,ρ,f) and mdimH(M,f)(ρ) = mdimH(M,ρ,f) for any ρ ∈ M(τ). Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-02T19:25:53Z
dc.date.available.none.fl_str_mv 2024-09-02T19:25:53Z
dc.date.issued.none.fl_str_mv 2024-07-07
dc.date.submitted.none.fl_str_mv 2024-09-02
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Muentes, J., Becker, A.J., Baraviera, A.T. et al. Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric. Qual. Theory Dyn. Syst. 23 (Suppl 1), 261 (2024). https://doi.org/10.1007/s12346-024-01100-1
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12713
dc.identifier.doi.none.fl_str_mv 10.1007/s12346-024-01100-1
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Muentes, J., Becker, A.J., Baraviera, A.T. et al. Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric. Qual. Theory Dyn. Syst. 23 (Suppl 1), 261 (2024). https://doi.org/10.1007/s12346-024-01100-1
10.1007/s12346-024-01100-1
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12713
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 35 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.faculty.spa.fl_str_mv Ciencias Básicas
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Qualitative Theory of Dynamical Systems
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/1/s12346-024-01100-1.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/2/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/3/s12346-024-01100-1.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/4/s12346-024-01100-1.pdf.jpg
bitstream.checksum.fl_str_mv c6f451125b1be30da6b1db3618a685a7
e20ad307a1c5f3f25af9304a7a7c86b6
caa1e21e2b1155e35598d2a01edbfc0e
de4aa300395d6c66e4f718480d03c154
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1812096373527412736
spelling Muentes Acevedo, Jeovanny de Jesusec5c0208-d53f-44d4-a347-fdb3d28db2abBecker, Alex Jenarobb2b3c5f-e0d4-4e1f-8fb0-b163e53c0c9eBaraviera, Alexandrecc32ab15-e6ba-4d60-9901-731618e7c88fScopel, Érickb35575b9-9ded-4535-9e2c-64ef40d4e6722024-09-02T19:25:53Z2024-09-02T19:25:53Z2024-07-072024-09-02Muentes, J., Becker, A.J., Baraviera, A.T. et al. Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric. Qual. Theory Dyn. Syst. 23 (Suppl 1), 261 (2024). https://doi.org/10.1007/s12346-024-01100-1https://hdl.handle.net/20.500.12585/1271310.1007/s12346-024-01100-1Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarLet f : M → M be a continuous map on a compact metric space M equipped with a fixed metric d, and let τ be the topology on M induced by d. We denote by M(τ) the set consisting of all metrics on M that are equivalent to d. Let mdimM(M,d,f) and mdimH(M,d,f ) be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f) and mdimH(M,d,f) depend on the metric d chosen for M. In this work, we will prove that, for a fixed dynamical system f : M → M, the functions mdimM(M, f ) : M(τ) → R∪ {∞} and mdimH(M,f) : M(τ ) → R∪ {∞} are not continuous, where mdimM(M,f)(ρ) = mdimM(M,ρ,f) and mdimH(M,f)(ρ) = mdimH(M,ρ,f) for any ρ ∈ M(τ). Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.35 páginasapplication/pdfengQualitative Theory of Dynamical SystemsMetric Mean Dimension and Mean Hausdorff Dimension Varying the Metricinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Mean topological dimensionMetric mean dimensionMean Hausdorff dimensionTopological entropyBox dimensionHausdorff dimensionLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasCiencias BásicasCampus TecnológicoInvestigadoresAcevedo, J.M.: Genericity of continuous maps with positive metric mean dimension. RM 77(1), 1-30 (2022)Acevedo, J.M.: Genericity of homeomorphisms with full mean Hausdorff dimension. Regul. Chaotic Dyn. 29, 1-17 (2024)Acevedo, J.M., Romaña, S., Arias, R.: Density of the level sets of the metric mean dimension for homeomorphisms. J. Dyn. Differ. Equ. 1-14 (2024)Backes, L., Rodrigues, F.B.: A Variational Principle for the Metric Mean Dimension of Level Sets. IEEE Trans. Inf. Theory 69(9), 5485-5496 (2023)Carvalho, M., Pessil, G., Varandas, P.: A convex analysis approach to the metric mean dimension: limits of scaled pressures and variational principles. Adv. Math. 436, 109407 (2024)Carvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergod. Theory Dyn. Syst. 42(1), 40–64 (2022)Cheng, D., Li, Z., Selmi, B.: Upper metric mean dimensions with potential on subsets. Nonlinearity 34(2), 852 (2021)Dou, D.: Minimal subshifts of arbitrarymean topological dimension. Discrete Contin.Dyn. Syst. 37(3), 1411-1424 (2016)Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley (2004)Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1-49 (1967)Gromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2(4), 323-415 (1999)Gutman, Y.: Embedding topological dynamical systems with periodic points in cubical shifts. Ergod. Theory Dyn. Syst. 37(2), 512–538 (2017)Gutman, Y., Qiao, Y., Tsukamoto, M.: Application of signal analysis to the embedding problem of Zk -actions. Geom. Funct. Anal. 29(5), 1440-1502 (2019)Kloeckner, B., Mihalache, N.: An invitation to rough dynamics: zipper maps. arXiv preprint arXiv:2210.13038 (2022)Lacerda, G., Romaña, S.: Typical conservative homeomorphisms have total metric mean dimension. arXiv preprint arXiv:2311.03607 (2023)Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)Liu, Y., Selmi, B., Li, Z.: On the mean fractal dimensions of the Cartesian product sets. Chaos, Solitons & Fractals 180, 114503 (2024)Lindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019)Lindenstrauss, E.: Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Etudes Sci. Publ. Math. 89, 227–262 (1999)Ma, X., Yang, J., Chen, E.: Mean topological dimension for random bundle transformations. Ergod. Theory Dyn. Syst. 39(4), 1020–1041 (2019)Shinoda, M., Tsukamoto, M.: Symbolic dynamics in mean dimension theory. Ergod. Theory Dyn. Syst. 41(8), 2542–2560 (2021)Salat, T., Toth, J., Zsilinszky, L.: Metric space of metrics defined on a given set. Real Anal. Exch. 18(1), 225–231 (1992-1993)Tsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230(1), 183–193 (2019)Velozo, A., Velozo, R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)Yang, R., Chen, E., Zhou, X.: Bowen’s equations for upper metric mean dimension with potential. Nonlinearity 35(9), 4905 (2022)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALs12346-024-01100-1.pdfs12346-024-01100-1.pdfArtículo principalapplication/pdf506506https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/1/s12346-024-01100-1.pdfc6f451125b1be30da6b1db3618a685a7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTs12346-024-01100-1.pdf.txts12346-024-01100-1.pdf.txtExtracted texttext/plain62788https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/3/s12346-024-01100-1.pdf.txtcaa1e21e2b1155e35598d2a01edbfc0eMD53THUMBNAILs12346-024-01100-1.pdf.jpgs12346-024-01100-1.pdf.jpgGenerated Thumbnailimage/jpeg6165https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/4/s12346-024-01100-1.pdf.jpgde4aa300395d6c66e4f718480d03c154MD5420.500.12585/12713oai:repositorio.utb.edu.co:20.500.12585/127132024-09-03 00:18:14.866Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=