Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric
Let f : M → M be a continuous map on a compact metric space M equipped with a fixed metric d, and let τ be the topology on M induced by d. We denote by M(τ) the set consisting of all metrics on M that are equivalent to d. Let mdimM(M,d,f) and mdimH(M,d,f ) be, respectively, the metric mean dimension...
- Autores:
-
Muentes Acevedo, Jeovanny de Jesus
Becker, Alex Jenaro
Baraviera, Alexandre
Scopel, Érick
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12713
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12713
- Palabra clave:
- Mean topological dimension
Metric mean dimension
Mean Hausdorff dimension
Topological entropy
Box dimension
Hausdorff dimension
LEMB
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
UTB2_2ebc72e8d70fdd81d813dba7f5e49078 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12713 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric |
title |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric |
spellingShingle |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric Mean topological dimension Metric mean dimension Mean Hausdorff dimension Topological entropy Box dimension Hausdorff dimension LEMB |
title_short |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric |
title_full |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric |
title_fullStr |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric |
title_full_unstemmed |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric |
title_sort |
Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric |
dc.creator.fl_str_mv |
Muentes Acevedo, Jeovanny de Jesus Becker, Alex Jenaro Baraviera, Alexandre Scopel, Érick |
dc.contributor.author.none.fl_str_mv |
Muentes Acevedo, Jeovanny de Jesus Becker, Alex Jenaro Baraviera, Alexandre Scopel, Érick |
dc.subject.keywords.spa.fl_str_mv |
Mean topological dimension Metric mean dimension Mean Hausdorff dimension Topological entropy Box dimension Hausdorff dimension |
topic |
Mean topological dimension Metric mean dimension Mean Hausdorff dimension Topological entropy Box dimension Hausdorff dimension LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
Let f : M → M be a continuous map on a compact metric space M equipped with a fixed metric d, and let τ be the topology on M induced by d. We denote by M(τ) the set consisting of all metrics on M that are equivalent to d. Let mdimM(M,d,f) and mdimH(M,d,f ) be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f) and mdimH(M,d,f) depend on the metric d chosen for M. In this work, we will prove that, for a fixed dynamical system f : M → M, the functions mdimM(M, f ) : M(τ) → R∪ {∞} and mdimH(M,f) : M(τ ) → R∪ {∞} are not continuous, where mdimM(M,f)(ρ) = mdimM(M,ρ,f) and mdimH(M,f)(ρ) = mdimH(M,ρ,f) for any ρ ∈ M(τ). Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-02T19:25:53Z |
dc.date.available.none.fl_str_mv |
2024-09-02T19:25:53Z |
dc.date.issued.none.fl_str_mv |
2024-07-07 |
dc.date.submitted.none.fl_str_mv |
2024-09-02 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Muentes, J., Becker, A.J., Baraviera, A.T. et al. Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric. Qual. Theory Dyn. Syst. 23 (Suppl 1), 261 (2024). https://doi.org/10.1007/s12346-024-01100-1 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12713 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12346-024-01100-1 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Muentes, J., Becker, A.J., Baraviera, A.T. et al. Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric. Qual. Theory Dyn. Syst. 23 (Suppl 1), 261 (2024). https://doi.org/10.1007/s12346-024-01100-1 10.1007/s12346-024-01100-1 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12713 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
35 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.publisher.faculty.spa.fl_str_mv |
Ciencias Básicas |
dc.publisher.sede.spa.fl_str_mv |
Campus Tecnológico |
dc.source.spa.fl_str_mv |
Qualitative Theory of Dynamical Systems |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/1/s12346-024-01100-1.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/2/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/3/s12346-024-01100-1.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/4/s12346-024-01100-1.pdf.jpg |
bitstream.checksum.fl_str_mv |
c6f451125b1be30da6b1db3618a685a7 e20ad307a1c5f3f25af9304a7a7c86b6 caa1e21e2b1155e35598d2a01edbfc0e de4aa300395d6c66e4f718480d03c154 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021553169367040 |
spelling |
Muentes Acevedo, Jeovanny de Jesusec5c0208-d53f-44d4-a347-fdb3d28db2abBecker, Alex Jenarobb2b3c5f-e0d4-4e1f-8fb0-b163e53c0c9eBaraviera, Alexandrecc32ab15-e6ba-4d60-9901-731618e7c88fScopel, Érickb35575b9-9ded-4535-9e2c-64ef40d4e6722024-09-02T19:25:53Z2024-09-02T19:25:53Z2024-07-072024-09-02Muentes, J., Becker, A.J., Baraviera, A.T. et al. Metric Mean Dimension and Mean Hausdorff Dimension Varying the Metric. Qual. Theory Dyn. Syst. 23 (Suppl 1), 261 (2024). https://doi.org/10.1007/s12346-024-01100-1https://hdl.handle.net/20.500.12585/1271310.1007/s12346-024-01100-1Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarLet f : M → M be a continuous map on a compact metric space M equipped with a fixed metric d, and let τ be the topology on M induced by d. We denote by M(τ) the set consisting of all metrics on M that are equivalent to d. Let mdimM(M,d,f) and mdimH(M,d,f ) be, respectively, the metric mean dimension and mean Hausdorff dimension of f. First, we will establish some fundamental properties of the mean Hausdorff dimension. Furthermore, it is important to note that mdimM(M,d,f) and mdimH(M,d,f) depend on the metric d chosen for M. In this work, we will prove that, for a fixed dynamical system f : M → M, the functions mdimM(M, f ) : M(τ) → R∪ {∞} and mdimH(M,f) : M(τ ) → R∪ {∞} are not continuous, where mdimM(M,f)(ρ) = mdimM(M,ρ,f) and mdimH(M,f)(ρ) = mdimH(M,ρ,f) for any ρ ∈ M(τ). Furthermore, we will present examples of certain classes of metrics for which the metric mean dimension is a continuous function.35 páginasapplication/pdfengQualitative Theory of Dynamical SystemsMetric Mean Dimension and Mean Hausdorff Dimension Varying the Metricinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Mean topological dimensionMetric mean dimensionMean Hausdorff dimensionTopological entropyBox dimensionHausdorff dimensionLEMBinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cartagena de IndiasCiencias BásicasCampus TecnológicoInvestigadoresAcevedo, J.M.: Genericity of continuous maps with positive metric mean dimension. RM 77(1), 1-30 (2022)Acevedo, J.M.: Genericity of homeomorphisms with full mean Hausdorff dimension. Regul. Chaotic Dyn. 29, 1-17 (2024)Acevedo, J.M., Romaña, S., Arias, R.: Density of the level sets of the metric mean dimension for homeomorphisms. J. Dyn. Differ. Equ. 1-14 (2024)Backes, L., Rodrigues, F.B.: A Variational Principle for the Metric Mean Dimension of Level Sets. IEEE Trans. Inf. Theory 69(9), 5485-5496 (2023)Carvalho, M., Pessil, G., Varandas, P.: A convex analysis approach to the metric mean dimension: limits of scaled pressures and variational principles. Adv. Math. 436, 109407 (2024)Carvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergod. Theory Dyn. Syst. 42(1), 40–64 (2022)Cheng, D., Li, Z., Selmi, B.: Upper metric mean dimensions with potential on subsets. Nonlinearity 34(2), 852 (2021)Dou, D.: Minimal subshifts of arbitrarymean topological dimension. Discrete Contin.Dyn. Syst. 37(3), 1411-1424 (2016)Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley (2004)Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Syst. Theory 1, 1-49 (1967)Gromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2(4), 323-415 (1999)Gutman, Y.: Embedding topological dynamical systems with periodic points in cubical shifts. Ergod. Theory Dyn. Syst. 37(2), 512–538 (2017)Gutman, Y., Qiao, Y., Tsukamoto, M.: Application of signal analysis to the embedding problem of Zk -actions. Geom. Funct. Anal. 29(5), 1440-1502 (2019)Kloeckner, B., Mihalache, N.: An invitation to rough dynamics: zipper maps. arXiv preprint arXiv:2210.13038 (2022)Lacerda, G., Romaña, S.: Typical conservative homeomorphisms have total metric mean dimension. arXiv preprint arXiv:2311.03607 (2023)Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)Liu, Y., Selmi, B., Li, Z.: On the mean fractal dimensions of the Cartesian product sets. Chaos, Solitons & Fractals 180, 114503 (2024)Lindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019)Lindenstrauss, E.: Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Etudes Sci. Publ. Math. 89, 227–262 (1999)Ma, X., Yang, J., Chen, E.: Mean topological dimension for random bundle transformations. Ergod. Theory Dyn. Syst. 39(4), 1020–1041 (2019)Shinoda, M., Tsukamoto, M.: Symbolic dynamics in mean dimension theory. Ergod. Theory Dyn. Syst. 41(8), 2542–2560 (2021)Salat, T., Toth, J., Zsilinszky, L.: Metric space of metrics defined on a given set. Real Anal. Exch. 18(1), 225–231 (1992-1993)Tsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230(1), 183–193 (2019)Velozo, A., Velozo, R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)Yang, R., Chen, E., Zhou, X.: Bowen’s equations for upper metric mean dimension with potential. Nonlinearity 35(9), 4905 (2022)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALs12346-024-01100-1.pdfs12346-024-01100-1.pdfArtículo principalapplication/pdf506506https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/1/s12346-024-01100-1.pdfc6f451125b1be30da6b1db3618a685a7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/2/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD52TEXTs12346-024-01100-1.pdf.txts12346-024-01100-1.pdf.txtExtracted texttext/plain62788https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/3/s12346-024-01100-1.pdf.txtcaa1e21e2b1155e35598d2a01edbfc0eMD53THUMBNAILs12346-024-01100-1.pdf.jpgs12346-024-01100-1.pdf.jpgGenerated Thumbnailimage/jpeg6165https://repositorio.utb.edu.co/bitstream/20.500.12585/12713/4/s12346-024-01100-1.pdf.jpgde4aa300395d6c66e4f718480d03c154MD5420.500.12585/12713oai:repositorio.utb.edu.co:20.500.12585/127132024-09-03 00:18:14.866Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |