Advanced exergetic analysis of preheat train of a crude oil distillation unit
In this investigation, the conventional and advanced exergy analysis is used to obtain information about the conditions of the heat exchangers belonging to a crude oil distillation unit, previously to future studies to establish the most cost-efficient moments for the execution of maintenance activi...
- Autores:
-
Fajardo Cuadro, Juan Gabriel
Negrette, Camilo
Yabrudy, Daniel
Cardona, Camilo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/10656
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/10656
- Palabra clave:
- Advanced Exergy Analysis
Crude Oil Distillation Unit
Exergy destruction
Heat Exchanger
Preheat Train
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2e16ba0391f0abbffeefd43428d9ffd6 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/10656 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Advanced exergetic analysis of preheat train of a crude oil distillation unit |
title |
Advanced exergetic analysis of preheat train of a crude oil distillation unit |
spellingShingle |
Advanced exergetic analysis of preheat train of a crude oil distillation unit Advanced Exergy Analysis Crude Oil Distillation Unit Exergy destruction Heat Exchanger Preheat Train |
title_short |
Advanced exergetic analysis of preheat train of a crude oil distillation unit |
title_full |
Advanced exergetic analysis of preheat train of a crude oil distillation unit |
title_fullStr |
Advanced exergetic analysis of preheat train of a crude oil distillation unit |
title_full_unstemmed |
Advanced exergetic analysis of preheat train of a crude oil distillation unit |
title_sort |
Advanced exergetic analysis of preheat train of a crude oil distillation unit |
dc.creator.fl_str_mv |
Fajardo Cuadro, Juan Gabriel Negrette, Camilo Yabrudy, Daniel Cardona, Camilo |
dc.contributor.author.none.fl_str_mv |
Fajardo Cuadro, Juan Gabriel Negrette, Camilo Yabrudy, Daniel Cardona, Camilo |
dc.subject.keywords.spa.fl_str_mv |
Advanced Exergy Analysis Crude Oil Distillation Unit Exergy destruction Heat Exchanger Preheat Train |
topic |
Advanced Exergy Analysis Crude Oil Distillation Unit Exergy destruction Heat Exchanger Preheat Train |
description |
In this investigation, the conventional and advanced exergy analysis is used to obtain information about the conditions of the heat exchangers belonging to a crude oil distillation unit, previously to future studies to establish the most cost-efficient moments for the execution of maintenance activities in the exchangers. Conventional, unavoidable, avoidable, endogenous, and exogenous exergy destruction is calculated and the combinations between these last four terms. Mexogenous analysis is applied to individualize the relationships between the exchangers of the network. The results put the total exergy destruction at over 61.6 MW, being 63% avoidable. Five heat exchangers are considered critical because they concentrate the highest rates of exergy destruction, corresponding to 39% of the total exergy destruction in the network, this categorization allows focusing the improvement works on heat exchangers that will produce a substantial increase in the efficiency of the preheat train. Additionally, to evaluate the performance in a better way, the effect of unavoidable exergy destruction on performance measurement of exchangers through the exergy efficiency is studied, indicating that in some cases removing the unavoidable part can increase the second law efficiency by more than fifteen percentage points |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-01 |
dc.date.accessioned.none.fl_str_mv |
2022-04-01T21:04:34Z |
dc.date.available.none.fl_str_mv |
2022-04-01T21:04:34Z |
dc.date.submitted.none.fl_str_mv |
2022-03-24 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.citation.spa.fl_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)Volume 8B-20212021 Article number V08BT08A007ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021Virtual, Online1 November 2021 through 5 November 2021Code 176672 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/10656 |
dc.identifier.doi.none.fl_str_mv |
10.1115/IMECE2021-69268 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)Volume 8B-20212021 Article number V08BT08A007ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021Virtual, Online1 November 2021 through 5 November 2021Code 176672 10.1115/IMECE2021-69268 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/10656 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
11 Páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
ASME 2008 International Mechanical Engineering Congress and Exposition, Vol. 10 (2021) |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/1/IMECE2021-69268%20ADVANCED%20EXERGETIC%20ANALYSIS%20O_Juan%20Gabriel%20Fajardo.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/4/IMECE2021-69268%20ADVANCED%20EXERGETIC%20ANALYSIS%20O_Juan%20Gabriel%20Fajardo.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/5/IMECE2021-69268%20ADVANCED%20EXERGETIC%20ANALYSIS%20O_Juan%20Gabriel%20Fajardo.pdf.jpg |
bitstream.checksum.fl_str_mv |
654d73e2081456a0bf9e7bd7e221fe86 4460e5956bc1d1639be9ae6146a50347 e20ad307a1c5f3f25af9304a7a7c86b6 5f4a6c70aebd0cdd30cb43f0d1be712c f79c51a44a95205b9f730e5313621993 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021596278423552 |
spelling |
Fajardo Cuadro, Juan Gabriel5681b114-d542-428e-a5ed-8e6ceeb90db3Negrette, Camilo810c7be2-9680-4e73-9176-53f0f6904f0dYabrudy, Daniel639a65c2-686b-4e44-a772-25c7f96785afCardona, Camilo91b225f9-21d6-4065-91ef-14b77611d1062022-04-01T21:04:34Z2022-04-01T21:04:34Z2021-11-012022-03-24ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)Volume 8B-20212021 Article number V08BT08A007ASME 2021 International Mechanical Engineering Congress and Exposition, IMECE 2021Virtual, Online1 November 2021 through 5 November 2021Code 176672https://hdl.handle.net/20.500.12585/1065610.1115/IMECE2021-69268Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarIn this investigation, the conventional and advanced exergy analysis is used to obtain information about the conditions of the heat exchangers belonging to a crude oil distillation unit, previously to future studies to establish the most cost-efficient moments for the execution of maintenance activities in the exchangers. Conventional, unavoidable, avoidable, endogenous, and exogenous exergy destruction is calculated and the combinations between these last four terms. Mexogenous analysis is applied to individualize the relationships between the exchangers of the network. The results put the total exergy destruction at over 61.6 MW, being 63% avoidable. Five heat exchangers are considered critical because they concentrate the highest rates of exergy destruction, corresponding to 39% of the total exergy destruction in the network, this categorization allows focusing the improvement works on heat exchangers that will produce a substantial increase in the efficiency of the preheat train. Additionally, to evaluate the performance in a better way, the effect of unavoidable exergy destruction on performance measurement of exchangers through the exergy efficiency is studied, indicating that in some cases removing the unavoidable part can increase the second law efficiency by more than fifteen percentage points11 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2ASME 2008 International Mechanical Engineering Congress and Exposition, Vol. 10 (2021)Advanced exergetic analysis of preheat train of a crude oil distillation unitinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Advanced Exergy AnalysisCrude Oil Distillation UnitExergy destructionHeat ExchangerPreheat TrainCartagena de IndiasMalinauskaite, J., Jouhara, H., Egilegor, B., Al-Mansour, F., Ahmad, L., Pusnik, M. Energy efficiency in the industrial sector in the EU, Slovenia, and Spain (Open Access) (2020) Energy, 208, art. no. 118398.Dunlop, T. Mind the gap_ A social sciences review of energy efficiency (2019) Soc. Sci, p. 12.Han, Y. (2020) Review: Energy efficiency evaluation of complex petrochemical industries, p. 15.Li, H., Sun, R., Dong, K., Guo, R. Refining operations: Energy consumption and emission (2016) Journal of Computational and Theoretical Nanoscience, 13 (2), pp. 1497-1502Coletti, F., Macchietto, S. Predicting refinery energy losses due to fouling in heat exchangers (2009) Computer Aided Chemical Engineering, 27 (C), pp. 219-224.Coletti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks; a thermo- hydraulic based analysis (2010) Computer Aided Chemical Engineering, 28 (C), pp. 19-24.Coletti, F., Macchietto, S., Polley, G.T. Effects of fouling on performance of retrofitted heat exchanger networks: A thermo-hydraulic based analysis (2011) Computers and Chemical Engineering, 35 (5), pp. 907-917.Müller-Steinhagen, H., Malayeri, M.R., Watkinson, A.P. Heat exchanger fouling: Environmental impacts (2009) Heat Transfer Engineering, 30 (10-11), pp. 773-776.Rivero, R. Application of the exergy concept in the petroleum refining and petrochemical industry (2002) Energy Conversion and Management, 43 (9-12), pp. 1199-1220.Izyan, Z.N., Shuhaimi, M. Exergy analysis for fuel reduction strategies in crude distillation unit (2014) Energy, 66, pp. 891-897.Tsatsaronis, G., Park, M.-H. On avoidable and unavoidable exergy destructions and investment costs in thermal systems (2002) Energy Conversion and Management, 43 (9-12), pp. 1259-1270.Fajardo, J., Valle, H., Buelvas, A. Avoidable and Unavoidable Exergetic Destruction Analysis of a Nitric Acid Production Plant (2018) Volume 6B: Energy Pittsburgh, Pennsylvania, USA, NovSmaïli, F., Vassiliadis, V. S., Wilson, D. I. (2001) Mitigation of Fouling in Refinery Heat Exchanger Networks by Optimal Management of Cleaning, p. 19. MaFard, M.M., Pourfayaz, F. Advanced exergy analysis of heat exchanger network in a complex natural gas refinery (2019) Journal of Cleaner Production, 206, pp. 670-687Rivero, R., Rendón, C., Gallegos, S. Exergy and exergoeconomic analysis of a crude oil combined distillation unit (2004) Energy, 29 (12-15 SPEC. ISS.), pp. 1909-1927Wang, L., Yang, Y., Morosuk, T., Tsatsaronis, G. Advanced thermodynamic analysis and evaluation of a supercritical power plant (Open Access) (2012) Energies, 5 (6), pp. 1850-1863Fajardo, J., Barreto, D., Sarria, B., Yabrudy, D., Negrete, C., Cardona, C. (2020) Efficiency centered maintenance of preheat train of a crude oil distillation unit, p. 12.Polley, G.T., Wilson, D.I., Yeap, B.L., Pugh, S.J. Evaluation of laboratory crude oil threshold fouling data for application to refinery pre-heat trains (2002) Applied Thermal Engineering, 22 (7), pp. 777-788.(1997) Technical Data Book-Petroleum Refining. Cited 423 times. American Petroleum Institute, 6th ed. Washington, D.C. United States: API Publishing ServicesDas, D.K., Nerella, S., Kulkarni, D. Thermal properties of petroleum and gas-to-liquid products (2007) Petroleum Science and Technology, 25 (4), pp. 415-425E. U. Schlünder, Ed., Heat exchanger design handbook, 1st ed., vol. 1. Düsseldorf: Hemisphere Publishing Corporation, 1983C. Yan, L. Lv, S. Wei, A. Eslamimanesh, and W. Shen, “Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant,” Appl. Therm. Eng., vol. 154, pp. 637–649, May 2019.A. Bejan, G. Tsatsaronis, and M. Moran, Thermal Design and Optimization, 1st ed. New York, United States: John Wiley & Sons, Inc, 1996.Tsatsaronis and T. Morosuk, “Advanced exergetic analysis of a novel system for generating electricity and vaporizing liquefied natural gas,” Energy, vol. 35, no. 2, pp. 820–829, Feb. 2010.G. Tsatsaronis, S. O. Kelly, and T. V. Morosuk, “Endogenous and Exogenous Exergy Destruction in Thermal Systems,” in Advanced Energy Systems, Chicago, Illinois, USA, pp. 311–317, Jan. 2006.S. Kelly, G. Tsatsaronis, and T. Morosuk, “Advanced exergetic analysis: Approaches for splitting the exergy destruction into endogenous and exogenous parts,” Energy, vol. 34, no. 3, pp. 384–391, Mar. 2009.T. Morosuk and G. Tsatsaronis, “Comparative evaluation of LNG – based cogeneration systems using advanced exergetic analysis,” Energy, vol. 36, no. 6, pp. 3771–3778, Jun. 2011.A. Vatani, M. Mehrpooya, and A. Palizdar, “Advanced exergetic analysis of five natural gas liquefaction processes,” Energy Convers. Manag., vol. 78, pp. 720–737, Feb. 2014.G. D. Vučković, M. M. Stojiljković, and M. V. Vukić, “First and second level of exergy destruction splitting in advanced exergy analysis for an existing boiler,” Energy Convers. Manag., vol. 104, pp. 8–16, Nov. 2015.O. Balli, “Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: Splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous,” Appl. Therm. Eng., vol. 111, pp. 152–169, Jan. 2017http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALIMECE2021-69268 ADVANCED EXERGETIC ANALYSIS O_Juan Gabriel Fajardo.pdfIMECE2021-69268 ADVANCED EXERGETIC ANALYSIS O_Juan Gabriel Fajardo.pdfapplication/pdf1195512https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/1/IMECE2021-69268%20ADVANCED%20EXERGETIC%20ANALYSIS%20O_Juan%20Gabriel%20Fajardo.pdf654d73e2081456a0bf9e7bd7e221fe86MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTIMECE2021-69268 ADVANCED EXERGETIC ANALYSIS O_Juan Gabriel Fajardo.pdf.txtIMECE2021-69268 ADVANCED EXERGETIC ANALYSIS O_Juan Gabriel Fajardo.pdf.txtExtracted texttext/plain39393https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/4/IMECE2021-69268%20ADVANCED%20EXERGETIC%20ANALYSIS%20O_Juan%20Gabriel%20Fajardo.pdf.txt5f4a6c70aebd0cdd30cb43f0d1be712cMD54THUMBNAILIMECE2021-69268 ADVANCED EXERGETIC ANALYSIS O_Juan Gabriel Fajardo.pdf.jpgIMECE2021-69268 ADVANCED EXERGETIC ANALYSIS O_Juan Gabriel Fajardo.pdf.jpgGenerated Thumbnailimage/jpeg78555https://repositorio.utb.edu.co/bitstream/20.500.12585/10656/5/IMECE2021-69268%20ADVANCED%20EXERGETIC%20ANALYSIS%20O_Juan%20Gabriel%20Fajardo.pdf.jpgf79c51a44a95205b9f730e5313621993MD5520.500.12585/10656oai:repositorio.utb.edu.co:20.500.12585/106562023-05-26 09:19:12.118Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |