Programmable diffractive lens for ophthalmic application

Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advan...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/9059
Acceso en línea:
https://hdl.handle.net/20.500.12585/9059
Palabra clave:
Diffractive optical element
Liquid crystal display
Ophthalmic lens
Programmable lens
Spatial light modulator
Visual ametropia compensation
Density (optical)
Diffractive optical elements
Geometrical optics
Light modulation
Light modulators
Liquid crystal displays
Compensation precision
Information optics
Liquid crystal on silicon spatial light modulators
Ophthalmic lens
Optical processors
Paraxial ray tracing
Programmable lens
Spatial light modulators
Lenses
Rights
restrictedAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_2ca4e255241d5760191e87afefbabaec
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/9059
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.none.fl_str_mv Programmable diffractive lens for ophthalmic application
title Programmable diffractive lens for ophthalmic application
spellingShingle Programmable diffractive lens for ophthalmic application
Diffractive optical element
Liquid crystal display
Ophthalmic lens
Programmable lens
Spatial light modulator
Visual ametropia compensation
Density (optical)
Diffractive optical elements
Geometrical optics
Light modulation
Light modulators
Liquid crystal displays
Compensation precision
Information optics
Liquid crystal on silicon spatial light modulators
Ophthalmic lens
Optical processors
Paraxial ray tracing
Programmable lens
Spatial light modulators
Lenses
title_short Programmable diffractive lens for ophthalmic application
title_full Programmable diffractive lens for ophthalmic application
title_fullStr Programmable diffractive lens for ophthalmic application
title_full_unstemmed Programmable diffractive lens for ophthalmic application
title_sort Programmable diffractive lens for ophthalmic application
dc.subject.keywords.none.fl_str_mv Diffractive optical element
Liquid crystal display
Ophthalmic lens
Programmable lens
Spatial light modulator
Visual ametropia compensation
Density (optical)
Diffractive optical elements
Geometrical optics
Light modulation
Light modulators
Liquid crystal displays
Compensation precision
Information optics
Liquid crystal on silicon spatial light modulators
Ophthalmic lens
Optical processors
Paraxial ray tracing
Programmable lens
Spatial light modulators
Lenses
topic Diffractive optical element
Liquid crystal display
Ophthalmic lens
Programmable lens
Spatial light modulator
Visual ametropia compensation
Density (optical)
Diffractive optical elements
Geometrical optics
Light modulation
Light modulators
Liquid crystal displays
Compensation precision
Information optics
Liquid crystal on silicon spatial light modulators
Ophthalmic lens
Optical processors
Paraxial ray tracing
Programmable lens
Spatial light modulators
Lenses
description Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided. © 2014 Society of Photo-Optical Instrumentation Engineers.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-03-26T16:32:51Z
dc.date.available.none.fl_str_mv 2020-03-26T16:32:51Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.spa.none.fl_str_mv Artículo
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Optical Engineering; Vol. 53, Núm. 6
dc.identifier.issn.none.fl_str_mv 00913286
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/9059
dc.identifier.doi.none.fl_str_mv 10.1117/1.OE.53.6.061709
dc.identifier.instname.none.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.none.fl_str_mv Repositorio UTB
dc.identifier.orcid.none.fl_str_mv 7201466399
8729551400
36142156300
55977858800
identifier_str_mv Optical Engineering; Vol. 53, Núm. 6
00913286
10.1117/1.OE.53.6.061709
Universidad Tecnológica de Bolívar
Repositorio UTB
7201466399
8729551400
36142156300
55977858800
url https://hdl.handle.net/20.500.12585/9059
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.none.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.cc.none.fl_str_mv Atribución-NoComercial 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.medium.none.fl_str_mv Recurso electrónico
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv SPIE
publisher.none.fl_str_mv SPIE
dc.source.none.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896937131&doi=10.1117%2f1.OE.53.6.061709&partnerID=40&md5=db319e355fb6b923408ff02a8524c1ee
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/9059/1/MiniProdInv.png
bitstream.checksum.fl_str_mv 0cb0f101a8d16897fb46fc914d3d7043
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021583700754432
spelling 2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014Optical Engineering; Vol. 53, Núm. 600913286https://hdl.handle.net/20.500.12585/905910.1117/1.OE.53.6.061709Universidad Tecnológica de BolívarRepositorio UTB720146639987295514003614215630055977858800Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided. © 2014 Society of Photo-Optical Instrumentation Engineers.Ministerio de Ciencia e Innovación, MICINN Federación Española de Enfermedades Raras, FEDER: DPI2009-08879This research has been partly funded by the Spanish Ministerio de Ciencia e Innovación and FEDER (Project DPI2009-08879).Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84896937131&doi=10.1117%2f1.OE.53.6.061709&partnerID=40&md5=db319e355fb6b923408ff02a8524c1eeProgrammable diffractive lens for ophthalmic applicationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Diffractive optical elementLiquid crystal displayOphthalmic lensProgrammable lensSpatial light modulatorVisual ametropia compensationDensity (optical)Diffractive optical elementsGeometrical opticsLight modulationLight modulatorsLiquid crystal displaysCompensation precisionInformation opticsLiquid crystal on silicon spatial light modulatorsOphthalmic lensOptical processorsParaxial ray tracingProgrammable lensSpatial light modulatorsLensesMillán M.S.Pérez-Cabré E.Romero L.A.Ramírez N.Laude, V., Twisted-nematic liquid-crystal pixelated active lens (1998) Optics Communications, 153 (1-3), pp. 134-152. , PII S0030401898001436Davis, J.A., Fresnel lens-encoded binary phase-only filters for optical pattern recognition (1989) Opt. Lett., 14 (13), pp. 659-661Fukuchi, N., Lensless vanderlugt optical correlator using two phase-only spatial light modulators (2009) Chin. Opt. Lett., 7 (12), pp. 1-3Zeng, X., Compact optical correlator based on one phase-only spatial light modulator (2011) Opt. Lett., 36 (8), pp. 1383-1385Millan, M.S., Oton, J., Perez-Cabre, E., Dynamic compensation of chromatic aberration in a programmable diffractive lens (2006) Optics Express, 14 (20), pp. 9103-9112. , http://www.opticsexpress.org/DirectPDFAccess/10D73503-BDB9-137E- CA9AF06F058CFF4A_9103.pdf?da=1&id=114588&seq=0&CFID= 32166241&CFTOKEN=73793471, DOI 10.1364/OE.14.009103Atchison, D.A., Spectacle lens design: A review (1992) Appl. Opt., 31 (19), pp. 3579-3585Fowler, C.W., Pateras, E.S., Liquid crystal lens review (1990) Ophthalmic and Physiological Optics, 10 (2), pp. 186-194Thibos, L.N., Bradley, A., Use of liquid-crystal adaptive-optics to alter the refractive state of the eye (1997) Optometry and Vision Science, 74 (7), pp. 581-587. , DOI 10.1097/00006324-199707000-00028Li, G., Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (16), pp. 6100-6104(2013), http://www.coastalvisionva.com, Coastal Vision website: (19 December)Manzanera, S., Prieto, P.M., Ayala, D.B., Lindacher, J.M., Artal, P., Liquid crystal adaptive optics visual simulator: Application to testing and design of ophthalmic optical elements (2007) Optics Express, 15 (24), pp. 16177-16188. , http://www.opticsexpress.org/DirectPDFAccess/A2E222BB-BDB9-137E- CE45809FB95C4C38_146452.pdf?da=1&id=146452&seq=0&CFID= 4949129&CFTOKEN=68360138, DOI 10.1364/OE.15.016177Fernández, E.J., Prieto, P.M., Artal, P., Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator (2009) Opt. Express, 17 (13), pp. 11013-11025Schwarz, C., Binocular adaptive optics vision analyzer with full control over the complex pupil functions (2011) Opt. Lett., 36 (24), pp. 4779-4781(2013), http://holoeye.com/, Holoeye website: (1 October)Smith, G., Refraction and visual acuity measurements: What are their measurement uncertainties? (2006) Clin. Exp. Optometry, 89 (2), pp. 66-72Otón, J., Millán, M.S., Pérez-Cabré, E., Programmable lens design in a pixelated screen of twisted-nematic liquid crystal display (2005) Opt. Pura Apl., 38 (2), pp. 47-56Otón, J., Imaging characteristics of programmable lenses generated by SLM (2006) CP860, Information Optics: 5th Int. Workshop, pp. 471-480. , G. Cristóbal, B. Javidi, and S. Vallmitjana, Eds., American Institute of Physics, Toledo, Spain(1999) Intraocular Lenses. Part 2: Optical Properties and Test Methods, , International Organization for Standardization (ISO), ISO 11979-2 Ophthalmic Implants, Geneva, SwitzerlandNorrby, S., Piers, P., Campbell, C., Van Der Mooren, M., Model eyes for evaluation of intraocular lenses (2007) Applied Optics, 46 (26), pp. 6595-6605. , DOI 10.1364/AO.46.006595Rabbets, R.B., (2007) Bennett & Rabbets' Clinical Visual Optics, , 4th ed., Butterworth-Heinemann Elsevier, EdinburghOton, J., Ambs, P., Millan, M.S., Perez-Cabre, E., Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays (2007) Applied Optics, 46 (23), pp. 5667-5679. , DOI 10.1364/AO.46.005667Márquez, A., Achromatic diffractive lens written onto a liquid crystal display (2006) Opt. Lett., 31 (3), pp. 392-394Millán, M.S., Otón, J., Pérez-Cabré, E., Chromatic compensation of programmable Fresnel lenses (2006) Opt. Express, 14 (13), pp. 6226-6242Romero, L.A., Double peacock eye optical element for extended focal depth imaging with ophthalmic applications (2012) J. Biomed. Opt., 17 (4), p. 046013http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9059/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9059oai:repositorio.utb.edu.co:20.500.12585/90592021-02-02 14:01:34.473Repositorio Institucional UTBrepositorioutb@utb.edu.co