Programmable diffractive lens for ophthalmic application
Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advan...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9059
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9059
- Palabra clave:
- Diffractive optical element
Liquid crystal display
Ophthalmic lens
Programmable lens
Spatial light modulator
Visual ametropia compensation
Density (optical)
Diffractive optical elements
Geometrical optics
Light modulation
Light modulators
Liquid crystal displays
Compensation precision
Information optics
Liquid crystal on silicon spatial light modulators
Ophthalmic lens
Optical processors
Paraxial ray tracing
Programmable lens
Spatial light modulators
Lenses
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2ca4e255241d5760191e87afefbabaec |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9059 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Programmable diffractive lens for ophthalmic application |
title |
Programmable diffractive lens for ophthalmic application |
spellingShingle |
Programmable diffractive lens for ophthalmic application Diffractive optical element Liquid crystal display Ophthalmic lens Programmable lens Spatial light modulator Visual ametropia compensation Density (optical) Diffractive optical elements Geometrical optics Light modulation Light modulators Liquid crystal displays Compensation precision Information optics Liquid crystal on silicon spatial light modulators Ophthalmic lens Optical processors Paraxial ray tracing Programmable lens Spatial light modulators Lenses |
title_short |
Programmable diffractive lens for ophthalmic application |
title_full |
Programmable diffractive lens for ophthalmic application |
title_fullStr |
Programmable diffractive lens for ophthalmic application |
title_full_unstemmed |
Programmable diffractive lens for ophthalmic application |
title_sort |
Programmable diffractive lens for ophthalmic application |
dc.subject.keywords.none.fl_str_mv |
Diffractive optical element Liquid crystal display Ophthalmic lens Programmable lens Spatial light modulator Visual ametropia compensation Density (optical) Diffractive optical elements Geometrical optics Light modulation Light modulators Liquid crystal displays Compensation precision Information optics Liquid crystal on silicon spatial light modulators Ophthalmic lens Optical processors Paraxial ray tracing Programmable lens Spatial light modulators Lenses |
topic |
Diffractive optical element Liquid crystal display Ophthalmic lens Programmable lens Spatial light modulator Visual ametropia compensation Density (optical) Diffractive optical elements Geometrical optics Light modulation Light modulators Liquid crystal displays Compensation precision Information optics Liquid crystal on silicon spatial light modulators Ophthalmic lens Optical processors Paraxial ray tracing Programmable lens Spatial light modulators Lenses |
description |
Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided. © 2014 Society of Photo-Optical Instrumentation Engineers. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:51Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Optical Engineering; Vol. 53, Núm. 6 |
dc.identifier.issn.none.fl_str_mv |
00913286 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9059 |
dc.identifier.doi.none.fl_str_mv |
10.1117/1.OE.53.6.061709 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
7201466399 8729551400 36142156300 55977858800 |
identifier_str_mv |
Optical Engineering; Vol. 53, Núm. 6 00913286 10.1117/1.OE.53.6.061709 Universidad Tecnológica de Bolívar Repositorio UTB 7201466399 8729551400 36142156300 55977858800 |
url |
https://hdl.handle.net/20.500.12585/9059 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
SPIE |
publisher.none.fl_str_mv |
SPIE |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84896937131&doi=10.1117%2f1.OE.53.6.061709&partnerID=40&md5=db319e355fb6b923408ff02a8524c1ee |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9059/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021583700754432 |
spelling |
2020-03-26T16:32:51Z2020-03-26T16:32:51Z2014Optical Engineering; Vol. 53, Núm. 600913286https://hdl.handle.net/20.500.12585/905910.1117/1.OE.53.6.061709Universidad Tecnológica de BolívarRepositorio UTB720146639987295514003614215630055977858800Pixelated liquid crystal displays have been widely used as spatial light modulators to implement programmable diffractive optical elements, particularly diffractive lenses. Many different applications of such components have been developed in information optics and optical processors that take advantage of their properties of great flexibility, easy and fast refreshment, and multiplexing capability in comparison with equivalent conventional refractive lenses. We explore the application of programmable diffractive lenses displayed on the pixelated screen of a liquid crystal on silicon spatial light modulator to ophthalmic optics. In particular, we consider the use of programmable diffractive lenses for the visual compensation of refractive errors (myopia, hypermetropia, astigmatism) and presbyopia. The principles of compensation are described and sketched using geometrical optics and paraxial ray tracing. For the proof of concept, a series of experiments with artificial eye in optical bench are conducted. We analyze the compensation precision in terms of optical power and compare the results with those obtained by means of conventional ophthalmic lenses. Practical considerations oriented to feasible applications are provided. © 2014 Society of Photo-Optical Instrumentation Engineers.Ministerio de Ciencia e Innovación, MICINN Federación Española de Enfermedades Raras, FEDER: DPI2009-08879This research has been partly funded by the Spanish Ministerio de Ciencia e Innovación and FEDER (Project DPI2009-08879).Recurso electrónicoapplication/pdfengSPIEhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84896937131&doi=10.1117%2f1.OE.53.6.061709&partnerID=40&md5=db319e355fb6b923408ff02a8524c1eeProgrammable diffractive lens for ophthalmic applicationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Diffractive optical elementLiquid crystal displayOphthalmic lensProgrammable lensSpatial light modulatorVisual ametropia compensationDensity (optical)Diffractive optical elementsGeometrical opticsLight modulationLight modulatorsLiquid crystal displaysCompensation precisionInformation opticsLiquid crystal on silicon spatial light modulatorsOphthalmic lensOptical processorsParaxial ray tracingProgrammable lensSpatial light modulatorsLensesMillán M.S.Pérez-Cabré E.Romero L.A.Ramírez N.Laude, V., Twisted-nematic liquid-crystal pixelated active lens (1998) Optics Communications, 153 (1-3), pp. 134-152. , PII S0030401898001436Davis, J.A., Fresnel lens-encoded binary phase-only filters for optical pattern recognition (1989) Opt. Lett., 14 (13), pp. 659-661Fukuchi, N., Lensless vanderlugt optical correlator using two phase-only spatial light modulators (2009) Chin. Opt. Lett., 7 (12), pp. 1-3Zeng, X., Compact optical correlator based on one phase-only spatial light modulator (2011) Opt. Lett., 36 (8), pp. 1383-1385Millan, M.S., Oton, J., Perez-Cabre, E., Dynamic compensation of chromatic aberration in a programmable diffractive lens (2006) Optics Express, 14 (20), pp. 9103-9112. , http://www.opticsexpress.org/DirectPDFAccess/10D73503-BDB9-137E- CA9AF06F058CFF4A_9103.pdf?da=1&id=114588&seq=0&CFID= 32166241&CFTOKEN=73793471, DOI 10.1364/OE.14.009103Atchison, D.A., Spectacle lens design: A review (1992) Appl. Opt., 31 (19), pp. 3579-3585Fowler, C.W., Pateras, E.S., Liquid crystal lens review (1990) Ophthalmic and Physiological Optics, 10 (2), pp. 186-194Thibos, L.N., Bradley, A., Use of liquid-crystal adaptive-optics to alter the refractive state of the eye (1997) Optometry and Vision Science, 74 (7), pp. 581-587. , DOI 10.1097/00006324-199707000-00028Li, G., Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications (2006) Proc. Natl. Acad. Sci. U. S. A., 103 (16), pp. 6100-6104(2013), http://www.coastalvisionva.com, Coastal Vision website: (19 December)Manzanera, S., Prieto, P.M., Ayala, D.B., Lindacher, J.M., Artal, P., Liquid crystal adaptive optics visual simulator: Application to testing and design of ophthalmic optical elements (2007) Optics Express, 15 (24), pp. 16177-16188. , http://www.opticsexpress.org/DirectPDFAccess/A2E222BB-BDB9-137E- CE45809FB95C4C38_146452.pdf?da=1&id=146452&seq=0&CFID= 4949129&CFTOKEN=68360138, DOI 10.1364/OE.15.016177Fernández, E.J., Prieto, P.M., Artal, P., Wave-aberration control with a liquid crystal on silicon (LCOS) spatial phase modulator (2009) Opt. Express, 17 (13), pp. 11013-11025Schwarz, C., Binocular adaptive optics vision analyzer with full control over the complex pupil functions (2011) Opt. Lett., 36 (24), pp. 4779-4781(2013), http://holoeye.com/, Holoeye website: (1 October)Smith, G., Refraction and visual acuity measurements: What are their measurement uncertainties? (2006) Clin. Exp. Optometry, 89 (2), pp. 66-72Otón, J., Millán, M.S., Pérez-Cabré, E., Programmable lens design in a pixelated screen of twisted-nematic liquid crystal display (2005) Opt. Pura Apl., 38 (2), pp. 47-56Otón, J., Imaging characteristics of programmable lenses generated by SLM (2006) CP860, Information Optics: 5th Int. Workshop, pp. 471-480. , G. Cristóbal, B. Javidi, and S. Vallmitjana, Eds., American Institute of Physics, Toledo, Spain(1999) Intraocular Lenses. Part 2: Optical Properties and Test Methods, , International Organization for Standardization (ISO), ISO 11979-2 Ophthalmic Implants, Geneva, SwitzerlandNorrby, S., Piers, P., Campbell, C., Van Der Mooren, M., Model eyes for evaluation of intraocular lenses (2007) Applied Optics, 46 (26), pp. 6595-6605. , DOI 10.1364/AO.46.006595Rabbets, R.B., (2007) Bennett & Rabbets' Clinical Visual Optics, , 4th ed., Butterworth-Heinemann Elsevier, EdinburghOton, J., Ambs, P., Millan, M.S., Perez-Cabre, E., Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays (2007) Applied Optics, 46 (23), pp. 5667-5679. , DOI 10.1364/AO.46.005667Márquez, A., Achromatic diffractive lens written onto a liquid crystal display (2006) Opt. Lett., 31 (3), pp. 392-394Millán, M.S., Otón, J., Pérez-Cabré, E., Chromatic compensation of programmable Fresnel lenses (2006) Opt. Express, 14 (13), pp. 6226-6242Romero, L.A., Double peacock eye optical element for extended focal depth imaging with ophthalmic applications (2012) J. Biomed. Opt., 17 (4), p. 046013http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9059/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9059oai:repositorio.utb.edu.co:20.500.12585/90592021-02-02 14:01:34.473Repositorio Institucional UTBrepositorioutb@utb.edu.co |