Black hole optimizer for the optimal power injection in distribution networks using DG
The optimal sizing of Distributed Generators (DG) in electric power distribution networks is carried out through a metaheuristic optimization strategy. To size DG it is proposed an optimal power flow model is formulated by considering that the location of these sources has been previously defined by...
- Autores:
-
Montoya, Oscar Danilo
Giral-Ramírez, Diego Armando
Grisales-Noreña, Luis Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/12299
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/12299
- Palabra clave:
- Placement;
Active Distribution Network;
Voltage Stability
LEMB
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2c9d04f915ee0848fa1ff1eb81b56de1 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/12299 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Black hole optimizer for the optimal power injection in distribution networks using DG |
title |
Black hole optimizer for the optimal power injection in distribution networks using DG |
spellingShingle |
Black hole optimizer for the optimal power injection in distribution networks using DG Placement; Active Distribution Network; Voltage Stability LEMB |
title_short |
Black hole optimizer for the optimal power injection in distribution networks using DG |
title_full |
Black hole optimizer for the optimal power injection in distribution networks using DG |
title_fullStr |
Black hole optimizer for the optimal power injection in distribution networks using DG |
title_full_unstemmed |
Black hole optimizer for the optimal power injection in distribution networks using DG |
title_sort |
Black hole optimizer for the optimal power injection in distribution networks using DG |
dc.creator.fl_str_mv |
Montoya, Oscar Danilo Giral-Ramírez, Diego Armando Grisales-Noreña, Luis Fernando |
dc.contributor.author.none.fl_str_mv |
Montoya, Oscar Danilo Giral-Ramírez, Diego Armando Grisales-Noreña, Luis Fernando |
dc.subject.keywords.spa.fl_str_mv |
Placement; Active Distribution Network; Voltage Stability |
topic |
Placement; Active Distribution Network; Voltage Stability LEMB |
dc.subject.armarc.none.fl_str_mv |
LEMB |
description |
The optimal sizing of Distributed Generators (DG) in electric power distribution networks is carried out through a metaheuristic optimization strategy. To size DG it is proposed an optimal power flow model is formulated by considering that the location of these sources has been previously defined by the distribution company. The solution of the optimal power flow is reached with the Black Hole Optimizer (BHO). A methodology is used master-slave optimization methodology, where the BHO (i.e., master stage) defines the sizes of the DG and the slave stage evaluates the objective function with a load flow algorithm, this work using the triangular-based power flow method. Numerical results in the 33-node and the 69-node test system demonstrates the effectiveness and robustness of the proposed approach when compared with literature results. © 2021 Institute of Physics Publishing. All rights reserved. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-07-21T15:53:57Z |
dc.date.available.none.fl_str_mv |
2023-07-21T15:53:57Z |
dc.date.submitted.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.spa.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
status_str |
draft |
dc.identifier.citation.spa.fl_str_mv |
Montoya, O. D., Giral-Ramírez, D. A., & Grisales-Noreña, L. F. (2021, December). Black hole optimizer for the optimal power injection in distribution networks using DG. In Journal of Physics: Conference Series (Vol. 2135, No. 1, p. 012010). IOP Publishing. |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/12299 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1742-6596/2135/1/012010 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Universidad Tecnológica de Bolívar |
identifier_str_mv |
Montoya, O. D., Giral-Ramírez, D. A., & Grisales-Noreña, L. F. (2021, December). Black hole optimizer for the optimal power injection in distribution networks using DG. In Journal of Physics: Conference Series (Vol. 2135, No. 1, p. 012010). IOP Publishing. 10.1088/1742-6596/2135/1/012010 Universidad Tecnológica de Bolívar Repositorio Universidad Tecnológica de Bolívar |
url |
https://hdl.handle.net/20.500.12585/12299 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.cc.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
20 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Cartagena de Indias |
dc.source.spa.fl_str_mv |
Journal of Physics: Conference Series (Vol. 2135, No. 1, p. 012010). IOP Publishing. |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/1/Montoya_2021_J._Phys.__Conf._Ser._2135_012010%20%282%29.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/3/license.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/2/license_rdf https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/4/Montoya_2021_J._Phys.__Conf._Ser._2135_012010%20%282%29.pdf.txt https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/5/Montoya_2021_J._Phys.__Conf._Ser._2135_012010%20%282%29.pdf.jpg |
bitstream.checksum.fl_str_mv |
b72ac7bef5908b31928e916a8ddf3d48 e20ad307a1c5f3f25af9304a7a7c86b6 4460e5956bc1d1639be9ae6146a50347 64bd77a02b9e7428d970aadea3d598e2 8b64f794bcaa17c3efc76f3954d1b583 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021635945005056 |
spelling |
Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Giral-Ramírez, Diego Armandoa9612d05-bc90-49f9-94c7-20a0766e00f5Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d12023-07-21T15:53:57Z2023-07-21T15:53:57Z20212023Montoya, O. D., Giral-Ramírez, D. A., & Grisales-Noreña, L. F. (2021, December). Black hole optimizer for the optimal power injection in distribution networks using DG. In Journal of Physics: Conference Series (Vol. 2135, No. 1, p. 012010). IOP Publishing.https://hdl.handle.net/20.500.12585/1229910.1088/1742-6596/2135/1/012010Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThe optimal sizing of Distributed Generators (DG) in electric power distribution networks is carried out through a metaheuristic optimization strategy. To size DG it is proposed an optimal power flow model is formulated by considering that the location of these sources has been previously defined by the distribution company. The solution of the optimal power flow is reached with the Black Hole Optimizer (BHO). A methodology is used master-slave optimization methodology, where the BHO (i.e., master stage) defines the sizes of the DG and the slave stage evaluates the objective function with a load flow algorithm, this work using the triangular-based power flow method. Numerical results in the 33-node and the 69-node test system demonstrates the effectiveness and robustness of the proposed approach when compared with literature results. © 2021 Institute of Physics Publishing. All rights reserved.20 páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series (Vol. 2135, No. 1, p. 012010). IOP Publishing.Black hole optimizer for the optimal power injection in distribution networks using DGinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Placement;Active Distribution Network;Voltage StabilityLEMBCartagena de IndiasChithraDevi, S.A., Lakshminarasimman, L., Balamurugan, R. Stud Krill herd Algorithm for multiple DG placement and sizing in a radial distribution system (2017) Engineering Science and Technology, an International Journal, 20 (2), pp. 748-759. Cited 123 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2016.11.009Usama, M., Moghavvemi, M., Mokhlis, H., Mansor, N.N., Farooq, H., Pourdaryaei, A. Optimal Protection Coordination Scheme for Radial Distribution Network Considering ON/OFF-Grid (2021) IEEE Access, 9, art. no. 9312647, pp. 34921-34937. Cited 31 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2020.3048940Bhumkittipich, K., Phuangpornpitak, W. Optimal placement and sizing of distributed generation for power loss reduction using particle swarm optimization (2013) Energy Procedia, 34, pp. 307-317. Cited 67 times. http://www.sciencedirect.com/science/journal/18766102 ISBN: 978-162993568-3 doi: 10.1016/j.egypro.2013.06.759Dutta, S., Roy, P.K., Nandi, D. Optimal location of STATCOM using chemical reaction optimization for reactive power dispatch problem (Open Access) (2016) Ain Shams Engineering Journal, 7 (1), pp. 233-247. Cited 36 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2015.04.013Valencia, A., Hincapie, R.A., Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks (2021) Journal of Energy Storage, 34, art. no. 102158. Cited 61 times. http://www.journals.elsevier.com/journal-of-energy-storage/ doi: 10.1016/j.est.2020.102158Taylor, J.A., Hover, F.S. Convex models of distribution system reconfiguration (2012) IEEE Transactions on Power Systems, 27 (3), art. no. 6153415, pp. 1407-1413. Cited 339 times. doi: 10.1109/TPWRS.2012.2184307Kaur, S., Kumbhar, G., Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems (2014) International Journal of Electrical Power and Energy Systems, 63, pp. 609-617. Cited 194 times. doi: 10.1016/j.ijepes.2014.06.023Grisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (Open Access) (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018Gil-González, W., Garces, A., Montoya, O.D., Hernández, J.C. A mixed-integer convex model for the optimal placement and sizing of distributed generators in power distribution networks (2021) Applied Sciences (Switzerland), 11 (2), art. no. 627, pp. 1-15. Cited 29 times. https://www.mdpi.com/2076-3417/11/2/627/pdf doi: 10.3390/app11020627Montoya, O.D., Molina-Cabrera, A., Chamorro, H.R., Alvarado-Barrios, L., Rivas-Trujillo, E. A hybrid approach based on socp and the discrete version of the sca for optimal placement and sizing dgs in ac distribution networks (Open Access) (2021) Electronics (Switzerland), 10 (1), art. no. 26, pp. 1-19. Cited 12 times. https://www.mdpi.com/2079-9292/10/1/26/pdf doi: 10.3390/electronics10010026Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F. An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach (Open Access) (2020) Ain Shams Engineering Journal, 11 (2), pp. 409-418. Cited 51 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2019.08.011Gil-González, W., Montoya, O.D., Grisales-Noreña, L.F., Perea-Moreno, A.-J., Hernandez-Escobedo, Q. Optimal placement and sizing ofwind generators in ac grids considering reactive power capability and wind speed curves (2020) Sustainability (Switzerland), 12 (7), art. no. 2983. Cited 19 times. https://res.mdpi.com/d_attachment/sustainability/sustainability-12-02983/article_deploy/sustainability-12-02983-v2.pdf doi: 10.3390/su12072983Sultana, S., Roy, P.K. Krill herd algorithm for optimal location of distributed generator in radial distribution system (2016) Applied Soft Computing Journal, 40, pp. 391-404. Cited 130 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2015.11.036Gil-González, Walter, Montoya, Oscar Danilo, Grisales-Noreña, Luis Fernando, Alberto Ramírez Vanegas, Carlos, Cabrera, Alexander Molina Hybrid Optimization Strategy for Optimal Location and Sizing of DG in Distribution Networks (2020) Tecnura, 24 (66), pp. 47-61. Cited 3 times. octSattianadan, D., Sudhakaran, M., Dash, S.S., Vijayakumar, K., Ravindran, P. Optimal placement of DG in distribution system using genetic algorithm (2013) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8298 LNCS (PART 2), pp. 639-647. Cited 9 times. ISBN: 978-331903755-4 doi: 10.1007/978-3-319-03756-1_57Moradi, M.H., Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems (2012) International Journal of Electrical Power and Energy Systems, 34 (1), pp. 66-74. Cited 865 times. doi: 10.1016/j.ijepes.2011.08.023Montoya, O.D., Gil-González, W., Orozco-Henao, C. Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach (2020) Engineering Science and Technology, an International Journal, 23 (6), pp. 1351-1363. Cited 28 times. www.journals.elsevier.com/engineering-science-and-technology-an-international-journal/ doi: 10.1016/j.jestch.2020.08.002Tolba, M.A., Tulsky, V.N., Diab, A.A.Z. Optimal allocation and sizing of multiple distributed generators in distribution networks using a novel hybrid particle swarm optimization algorithm (2017) Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, ElConRus 2017, art. no. 7910880, pp. 1606-1612. Cited 23 times. ISBN: 978-150904865-6 doi: 10.1109/EIConRus.2017.7910880Laksmi Kumari, R.V.S., Nagesh Kumar, G.V., Siva Nagaraju, S., Babita Jain, M. Optimal sizing of distributed generation using particle swarm optimization (2018) 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017, 2018-January, pp. 499-505. Cited 25 times. ISBN: 978-150906106-8 doi: 10.1109/ICICICT1.2017.8342613Nguyen, T.T. Enhanced sunflower optimization for placement distributed generation in distribution system (2021) International Journal of Electrical and Computer Engineering, 11 (1), pp. 107-113. Cited 18 times. http://ijece.iaescore.com/index.php/IJECE/article/view/23020/14469 doi: 10.11591/ijece.v11i1.pp107-113Nara, K., Hayashi, Y., Ikeda, K., Ashizawa, T. Application of tabu search to optimal placement of distributed generators (2001) Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2 (WINTER MEETING), pp. 918-923. Cited 329 times.Gandomkar, M., Vakilian, M., Ehsan, M. A genetic-based tabu search algorithm for optimal DG allocation in distribution networks (2005) Electric Power Components and Systems, 33 (12), pp. 1351-1362. Cited 162 times. doi: 10.1080/15325000590964254Oda, E.S., Abdelsalam, A.A., Abdel-Wahab, M.N., El-Saadawi, M.M. Distributed generations planning using flower pollination algorithm for enhancing distribution system voltage stability (Open Access) (2017) Ain Shams Engineering Journal, 8 (4), pp. 593-603. Cited 43 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724208/description#description doi: 10.1016/j.asej.2015.12.001Sudabattula, S.K., Kowsalya, M. Flower pollination algorithm based optimal placement of solar based distributed generators in distribution system (Open Access) (2016) International Journal of Renewable Energy Research, 6 (4), pp. 1232-1241. Cited 14 times.Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Norena, L.F. Optimal power flow in direct-current power grids via black hole optimization (2019) Advances in Electrical and Electronic Engineering, 17 (1), pp. 24-32. Cited 27 times. http://advances.utc.sk/index.php/AEEE/article/download/3069/488488552 doi: 10.15598/aeee.v17i1.3069Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering (Open Access) (2013) Information Sciences, 222, pp. 175-184. Cited 902 times. doi: 10.1016/j.ins.2012.08.023Soto, R., Crawford, B., Olivares, R., Taramasco, C., Figueroa, I., Gómez, Á., Castro, C., (...), Paredes, F. Adaptive black hole algorithm for solving the set covering problem (Open Access) (2018) Mathematical Problems in Engineering, 2018, art. no. 2183214. Cited 21 times. http://www.hindawi.com/journals/mpe/contents.html doi: 10.1155/2018/2183214Farahmandian, Masoum, Hatamlou, Abdolreza Solving optimization problems using black hole algorithm (2015) Journal of Advanced Computer Science & Technology, 4 (1), p. 68. Cited 32 times. febZhang, J., Liu, K., Tan, Y., He, X. Random black hole particle swarm optimization and its application (2008) 2008 IEEE International Conference Neural Networks and Signal Processing, ICNNSP, art. no. 4590372, pp. 359-365. Cited 48 times. ISBN: 978-142442311-8 doi: 10.1109/ICNNSP.2008.4590372Balamurugan, R., Natarajan, A.M., Premalatha, K. Stellar-mass black hole optimization for biclustering microarray gene expression data (Open Access) (2015) Applied Artificial Intelligence, 29 (4), pp. 353-381. Cited 31 times. www.tandf.co.uk/journals/titles/08839514.asp doi: 10.1080/08839514.2015.1016391Grisales-Noreña, L.F., Garzon-Rivera, O.D., Danilo Montoya, O., Ramos-Paja, C.A. Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks (Open Access) (2019) Communications in Computer and Information Science, 1052, pp. 214-225. Cited 12 times. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_19Bouchekara, H.R.E.H. Optimal power flow using black-hole-based optimization approach (Open Access) (2014) Applied Soft Computing Journal, 24, pp. 879-888. Cited 187 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/621920/description#description doi: 10.1016/j.asoc.2014.08.056(2020) Black hole and its shadow - first direct visual evidence of a supermassive black hole Online, October https://directory.eoportal.org/web/eoportal/satellite-missions/b/black-holePiotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M. How novel is the "novel" black hole optimization approach? (Open Access) (2014) Information Sciences, 267, pp. 191-200. Cited 59 times. doi: 10.1016/j.ins.2014.01.026Marini, A., Mortazavi, S.S., Piegari, L., Ghazizadeh, M.-S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations (2019) Electric Power Systems Research, 170, pp. 229-243. Cited 43 times. doi: 10.1016/j.epsr.2018.12.026Injeti, S.K., Prema Kumar, N. A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems (Open Access) (2013) International Journal of Electrical Power and Energy Systems, 45 (1), pp. 142-151. Cited 262 times. doi: 10.1016/j.ijepes.2012.08.043Montoya, O.D., Grisales-Noreña, L.F., Amin, W.T., Rojas, L.A., Campillo, J. Vortex Search Algorithm for Optimal Sizing of Distributed Generators in AC Distribution Networks with Radial Topology (Open Access) (2019) Communications in Computer and Information Science, 1052, pp. 235-249. Cited 9 times. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_21http://purl.org/coar/resource_type/c_6501ORIGINALMontoya_2021_J._Phys.__Conf._Ser._2135_012010 (2).pdfMontoya_2021_J._Phys.__Conf._Ser._2135_012010 (2).pdfapplication/pdf944624https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/1/Montoya_2021_J._Phys.__Conf._Ser._2135_012010%20%282%29.pdfb72ac7bef5908b31928e916a8ddf3d48MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52TEXTMontoya_2021_J._Phys.__Conf._Ser._2135_012010 (2).pdf.txtMontoya_2021_J._Phys.__Conf._Ser._2135_012010 (2).pdf.txtExtracted texttext/plain36141https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/4/Montoya_2021_J._Phys.__Conf._Ser._2135_012010%20%282%29.pdf.txt64bd77a02b9e7428d970aadea3d598e2MD54THUMBNAILMontoya_2021_J._Phys.__Conf._Ser._2135_012010 (2).pdf.jpgMontoya_2021_J._Phys.__Conf._Ser._2135_012010 (2).pdf.jpgGenerated Thumbnailimage/jpeg4368https://repositorio.utb.edu.co/bitstream/20.500.12585/12299/5/Montoya_2021_J._Phys.__Conf._Ser._2135_012010%20%282%29.pdf.jpg8b64f794bcaa17c3efc76f3954d1b583MD5520.500.12585/12299oai:repositorio.utb.edu.co:20.500.12585/122992023-07-22 00:18:04.272Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo= |