Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action

This paper addresses the problem of the optimal stabilization of DC microgrids using a hierarchical control design. A recursive optimal power flow formulation is proposed in the tertiary stage that ensures the global optimum finding due to the convexity of the proposed quadratic optimization model i...

Full description

Autores:
Montoya, Oscar Danilo
Martin Serra, Federico
Molina-Cabrera, Alexander
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10701
Acceso en línea:
https://hdl.handle.net/20.500.12585/10701
https://doi.org/10.3390/computers11020022
Palabra clave:
Global stabilization controller
Microgrids
DC distribution grids
Exact feedback controller
Proportional and integral actions
Hierarchical control
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_2b0579bf9492a25e01043e9c6b44b855
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10701
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
title Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
spellingShingle Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
Global stabilization controller
Microgrids
DC distribution grids
Exact feedback controller
Proportional and integral actions
Hierarchical control
LEMB
title_short Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
title_full Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
title_fullStr Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
title_full_unstemmed Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
title_sort Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action
dc.creator.fl_str_mv Montoya, Oscar Danilo
Martin Serra, Federico
Molina-Cabrera, Alexander
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Martin Serra, Federico
Molina-Cabrera, Alexander
dc.subject.keywords.spa.fl_str_mv Global stabilization controller
Microgrids
DC distribution grids
Exact feedback controller
Proportional and integral actions
Hierarchical control
topic Global stabilization controller
Microgrids
DC distribution grids
Exact feedback controller
Proportional and integral actions
Hierarchical control
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description This paper addresses the problem of the optimal stabilization of DC microgrids using a hierarchical control design. A recursive optimal power flow formulation is proposed in the tertiary stage that ensures the global optimum finding due to the convexity of the proposed quadratic optimization model in determining the equilibrium operative point of the DC microgrid as a function of the demand and generation inputs. An exact feedback controller with integral action is applied in the primary and secondary controller layers, which ensures asymptotic stability in the sense of Lyapunov for the voltage variables. The dynamical model of the network is obtained in a set of reduced nodes that only includes constant power terminals interfaced through power electronic converters. This reduced model is obtained by applying Kron’s reduction to the linear loads and step nodes in the DC grid. Numerical simulations in a DC microgrid with radial structure demonstrate the effectiveness and robustness of the proposed hierarchical controller in maintaining the stability of all the voltage profiles in the DC microgrid, independent of the load and generation variations
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-29T19:32:31Z
dc.date.available.none.fl_str_mv 2022-06-29T19:32:31Z
dc.date.issued.none.fl_str_mv 2022-02-06
dc.date.submitted.none.fl_str_mv 2022-06-28
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Serra, F.M.; Molina-Cabrera, A. Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action. Computers 2022, 11, 22. https://doi.org/10.3390/computers11020022
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10701
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/computers11020022
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Serra, F.M.; Molina-Cabrera, A. Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action. Computers 2022, 11, 22. https://doi.org/10.3390/computers11020022
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10701
https://doi.org/10.3390/computers11020022
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 16 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Computers, Vol. 11 N° 2 (2022)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/1/Hierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/4/Hierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/5/Hierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.jpg
bitstream.checksum.fl_str_mv 945bb7c8c45b2405d4e7e5f2f4f9b51e
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
abc00f8217827589c87b11b44d907a4e
2419a8e1dd4b03101bcef0cbaaf9c65b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1808397602440347648
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Martin Serra, Federicoe9e063e5-cc5b-42c0-860e-d58b2bbd76b4Molina-Cabrera, Alexander01b29f76-a1f3-4151-a070-ce883ba398492022-06-29T19:32:31Z2022-06-29T19:32:31Z2022-02-062022-06-28Montoya, O.D.; Serra, F.M.; Molina-Cabrera, A. Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Action. Computers 2022, 11, 22. https://doi.org/10.3390/computers11020022https://hdl.handle.net/20.500.12585/10701https://doi.org/10.3390/computers11020022Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarThis paper addresses the problem of the optimal stabilization of DC microgrids using a hierarchical control design. A recursive optimal power flow formulation is proposed in the tertiary stage that ensures the global optimum finding due to the convexity of the proposed quadratic optimization model in determining the equilibrium operative point of the DC microgrid as a function of the demand and generation inputs. An exact feedback controller with integral action is applied in the primary and secondary controller layers, which ensures asymptotic stability in the sense of Lyapunov for the voltage variables. The dynamical model of the network is obtained in a set of reduced nodes that only includes constant power terminals interfaced through power electronic converters. This reduced model is obtained by applying Kron’s reduction to the linear loads and step nodes in the DC grid. Numerical simulations in a DC microgrid with radial structure demonstrate the effectiveness and robustness of the proposed hierarchical controller in maintaining the stability of all the voltage profiles in the DC microgrid, independent of the load and generation variations16 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computers, Vol. 11 N° 2 (2022)Hierarchical Control for DC Microgrids Using an Exact Feedback Controller with Integral Actioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Global stabilization controllerMicrogridsDC distribution gridsExact feedback controllerProportional and integral actionsHierarchical controlLEMBCartagena de IndiasRodriguez, P.; Rouzbehi, K. Multi-terminal DC grids: Challenges and prospects. J. Mod. Power Syst. Clean Energy 2017, 5, 515–523.Simiyu, P.; Xin, A.; Bitew, G.T.; Shahzad, M.; Kunyu, W.; Tuan, L.K. Review of the DC voltage coordinated control strategies for multi-terminal VSC-MVDC distribution network. J. Eng. 2018, 2019, 1462–1468Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Elect. Power Syst. Res. 2017, 151, 149–153.Grisales-Noreña, L.F.; Garzón-Rivera, O.D.; Ocampo-Toro, J.A.; Ramos-Paja, C.A.; Rodriguez-Cabal, M.A. Metaheuristic Optimization Methods for Optimal Power Flow Analysis in DC Distribution Networks. Trans. Energy Syst. Eng. Appl. 2020, 1, 13–31.Planas, E.; Andreu, J.; Gárate, J.I.; de Alegría, I.M.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749Savitha, K.P.; Kanakasabapathy, P. Multi-port DC-DC converter for DC microgrid applications. In Proceedings of the 2016 IEEE 6th International Conference on Power Systems (ICPS), New Delhi, India, 4–6 March 2016.Singh, B.; Singh, B.; Chandra, A.; Al-Haddad, K.; Pandey, A.; Kothari, D. A Review of Three-Phase Improved Power Quality AC–DC Converters. IEEE Trans. Ind. Electron. 2004, 51, 641–660Mumtaz, F.; Yahaya, N.Z.; Meraj, S.T.; Singh, B.; Kannan, R.; Ibrahim, O. Review on non-isolated DC-DC converters and their control techniques for renewable energy applications. Ain Shams Eng. J. 2021, 12, 3747–3763Dragicevic, T.; Lu, X.; Vasquez, J.; Guerrero, J. DC Microgrids–Part I: A Review of Control Strategies and Stabilization Techniques. IEEE Trans. Power Electron. 2015, 1Shafiee, Q.; Dragicevic, T.; Vasquez, J.C.; Guerrero, J.M. Hierarchical Control for Multiple DC-Microgrids Clusters. IEEE Trans. Energy Convers. 2014, 29, 922–933.Murillo-Yarce, D.; Garcés-Ruiz, A.; Escobar-Mejía, A. Passivity-Based Control for DC-Microgrids with Constant Power Terminals in Island Mode Operation. Rev. Fac. Ing. Univ. Antioq. 2018, 86, 32–39Simiyu, P.; Xin, A.; Mouhammed, N.; Kunyu, W.; Gurti, J. Multi-terminal Medium Voltage DC Distribution Network Large-signal Stability Analysis. J. Elect. Eng. Technol. 2020, 15, 2099–2110Montoya, O.D.; Gil-González, W.; Serra, F.M.; Angelo, C.H.D.; Hernández, J.C. Global Optimal Stabilization of MT-HVDC Systems: Inverse Optimal Control Approach. Electronics 2021, 10, 2819Papadimitriou, C.; Zountouridou, E.; Hatziargyriou, N. Review of hierarchical control in DC microgrids. Elect. Power Syst. Res. 2015, 122, 159–167Montoya, O.D.; Gil-González, W.; Garces, A.; Serra, F.; Hernández, J.C. Stabilization of MT-HVDC grids via passivity-based control and convex optimization. Elect. Power Syst. Res. 2021, 196, 107273.Tightiz, L.; Yang, H. A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication. Energies 2020, 13, 2762.González, I.; Calderón, A.J.; Portalo, J.M. Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid. Sustainability 2021, 13, 2234.Elmouatamid, A.; Ouladsine, R.; Bakhouya, M.; Kamoun, N.E.; Khaidar, M.; Zine-Dine, K. Review of Control and Energy Management Approaches in Micro-Grid Systems. Energies 2020, 14, 168Ashourloo, M.; Khorsandi, A.; Mokhtari, H. Stabilization of DC microgrids with constant-power loads by an active damping method. In Proceedings of the 4th Annual International Power Electronics, Drive Systems and Technologies Conference, Tehran, Iran, 13–14 February 2013.Grisales-Noreña, L.F.; Ramos-Paja, C.A.; Gonzalez-Montoya, D.; Alcalá, G.; Hernandez-Escobedo, Q. Energy Management in PV Based Microgrids Designed for the Universidad Nacional de Colombia. Sustainability 2020, 12, 1219.Kwasinski, A.; Onwuchekwa, C.N. Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads. IEEE Trans. Power Electron. 2011, 26, 822–834Cardim, R.; Teixeira, M.C.; AssunçÃo, E.; Covacic, M.R. Design of state-derivative feedback controllers using a state feedback control design. IFAC Proc. Vol. 2007, 40, 22–27.Li, P.; Wang, J.; Wu, F.; Li, H. Nonlinear controller based on state feedback linearization for series-compensated DFIG-based wind power plants to mitigate sub-synchronous control interaction. Int. Trans. Electric. Energy Syst. 2018, 29, e2682Cisneros, R.; Pirro, M.; Bergna, G.; Ortega, R.; Ippoliti, G.; Molinas, M. Global tracking passivity-based PI control of bilinear systems: Application to the interleaved boost and modular multilevel converters. Cont. Eng. Pract. 2015, 43, 109–119Garces, A. On the Convergence of Newton's Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777Davoodi, E.; Babaei, E.; Mohammadi-Ivatloo, B.; Shafie-Khah, M.; Catalao, J.P.S. Multiobjective Optimal Power Flow Using a Semidefinite Programming-Based Model. IEEE Syst. J. 2021, 15, 158–169.Montoya, O.D.; Gil-González, W.; Garces, A. Sequential quadratic programming models for solving the OPF problem in DC grids. Elect. Power Syst. Res. 2019, 169, 18–23http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALHierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdfHierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdfapplication/pdf760436https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/1/Hierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf945bb7c8c45b2405d4e7e5f2f4f9b51eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTHierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.txtHierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.txtExtracted texttext/plain48769https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/4/Hierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.txtabc00f8217827589c87b11b44d907a4eMD54THUMBNAILHierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.jpgHierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.jpgGenerated Thumbnailimage/jpeg97659https://repositorio.utb.edu.co/bitstream/20.500.12585/10701/5/Hierarchical_Control_for_DC_Microgrids_Using_an_Ex.pdf.jpg2419a8e1dd4b03101bcef0cbaaf9c65bMD5520.500.12585/10701oai:repositorio.utb.edu.co:20.500.12585/107012022-06-30 00:18:58.237Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=