A wearable system for biosignal monitoring in weightlifting
The use of technological aids in sports has increased in the last years. These tools allow to register the athletes’ movements to evaluate and track their performance over time. With that information, it is possible to design more effective training routines, prevent and treat injuries, and improve...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8937
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8937
- Palabra clave:
- Body area networks
Electrogoniometer
Semg
Technological aids in sports
Weigthlifting
Electromyography
Energy efficiency
Networks (circuits)
Sports
Body area network
Design and construction
Electrogoniometers
Electromyography signals
Electronic systems
Improve performance
Semg
Weigthlifting
Wearable technology
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2ad65fe4ddfdbdea67eb0164f854b15e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8937 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
A wearable system for biosignal monitoring in weightlifting |
title |
A wearable system for biosignal monitoring in weightlifting |
spellingShingle |
A wearable system for biosignal monitoring in weightlifting Body area networks Electrogoniometer Semg Technological aids in sports Weigthlifting Electromyography Energy efficiency Networks (circuits) Sports Body area network Design and construction Electrogoniometers Electromyography signals Electronic systems Improve performance Semg Weigthlifting Wearable technology |
title_short |
A wearable system for biosignal monitoring in weightlifting |
title_full |
A wearable system for biosignal monitoring in weightlifting |
title_fullStr |
A wearable system for biosignal monitoring in weightlifting |
title_full_unstemmed |
A wearable system for biosignal monitoring in weightlifting |
title_sort |
A wearable system for biosignal monitoring in weightlifting |
dc.subject.keywords.none.fl_str_mv |
Body area networks Electrogoniometer Semg Technological aids in sports Weigthlifting Electromyography Energy efficiency Networks (circuits) Sports Body area network Design and construction Electrogoniometers Electromyography signals Electronic systems Improve performance Semg Weigthlifting Wearable technology |
topic |
Body area networks Electrogoniometer Semg Technological aids in sports Weigthlifting Electromyography Energy efficiency Networks (circuits) Sports Body area network Design and construction Electrogoniometers Electromyography signals Electronic systems Improve performance Semg Weigthlifting Wearable technology |
description |
The use of technological aids in sports has increased in the last years. These tools allow to register the athletes’ movements to evaluate and track their performance over time. With that information, it is possible to design more effective training routines, prevent and treat injuries, and improve performance. This paper describes the design and construction of an electronic system to register joint angle and electromyography signals during the execution of weightlifting exercises. The system was designed to be unobtrusive, energy efficient, and low cost. It was evaluated during the execution of flexion/extension exercises of the arm with weights, and was effective to acquire the signals and transmit them wirelessly in real-time. Electromiography signals were visualized and analyzed with an adequate dynamic range, and angle measurements were performed with error percentages less than 0.8 %. © 2016, International Sports Engineering Association. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:38Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:38Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Sports Engineering; Vol. 20, Núm. 1; pp. 73-80 |
dc.identifier.issn.none.fl_str_mv |
13697072 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8937 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s12283-016-0212-z |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
57190165939 56682863100 56682866800 56682770100 57210822856 |
identifier_str_mv |
Sports Engineering; Vol. 20, Núm. 1; pp. 73-80 13697072 10.1007/s12283-016-0212-z Universidad Tecnológica de Bolívar Repositorio UTB 57190165939 56682863100 56682866800 56682770100 57210822856 |
url |
https://hdl.handle.net/20.500.12585/8937 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer London |
publisher.none.fl_str_mv |
Springer London |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84978148116&doi=10.1007%2fs12283-016-0212-z&partnerID=40&md5=fe4948bb17ea510061ae78637db4bda4 |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8937/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021687148019712 |
spelling |
2020-03-26T16:32:38Z2020-03-26T16:32:38Z2017Sports Engineering; Vol. 20, Núm. 1; pp. 73-8013697072https://hdl.handle.net/20.500.12585/893710.1007/s12283-016-0212-zUniversidad Tecnológica de BolívarRepositorio UTB5719016593956682863100566828668005668277010057210822856The use of technological aids in sports has increased in the last years. These tools allow to register the athletes’ movements to evaluate and track their performance over time. With that information, it is possible to design more effective training routines, prevent and treat injuries, and improve performance. This paper describes the design and construction of an electronic system to register joint angle and electromyography signals during the execution of weightlifting exercises. The system was designed to be unobtrusive, energy efficient, and low cost. It was evaluated during the execution of flexion/extension exercises of the arm with weights, and was effective to acquire the signals and transmit them wirelessly in real-time. Electromiography signals were visualized and analyzed with an adequate dynamic range, and angle measurements were performed with error percentages less than 0.8 %. © 2016, International Sports Engineering Association.The authors thank the Colombian Science, Technology and Innovation Administrative Department-Colciencias for supporting this project through the "Semilleros de Investigaci?n 2013" Grant.Recurso electrónicoapplication/pdfengSpringer Londonhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84978148116&doi=10.1007%2fs12283-016-0212-z&partnerID=40&md5=fe4948bb17ea510061ae78637db4bda4A wearable system for biosignal monitoring in weightliftinginfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Body area networksElectrogoniometerSemgTechnological aids in sportsWeigthliftingElectromyographyEnergy efficiencyNetworks (circuits)SportsBody area networkDesign and constructionElectrogoniometersElectromyography signalsElectronic systemsImprove performanceSemgWeigthliftingWearable technologyMercado-Aguirre I.M.Mercado-Medina E.L.Chavarro-Hernandez Z.D.Domínguez Jiménez, Juan AntonioContreras Ortiz, Sonia HelenaAdelsberger, R., Tröster, G., Effects of stretching and warm-up routines on stability and balance during weight-lifting: a pilot investigation (2014) BMC Res Notes, 7 (1), p. 938Design of an electrogoniometer based on accelerometers for the evaluation of sports gesture in weight lifting (2014) Engineering Mechatronics and Automation (CIIMA), 2014, 3, pp. 1-3. , International Congress of, IEEE, cartagenaMercado-Medina, E.L., Chavarro-Hernandez, Z.D., Dominguez-Jimenez, J.A., Contreras-Ortiz, S.H., Design of an electronic system for monitoring muscle activity in weight lifting (2014) Engineering Mechatronics and Automation (CIIMA), 2014, 3, pp. 1-4. , International Congress of, IEEE, cartagenaBoseley, S., London 2012 olympics: how athletes use technology to win medals (2012) GuardianCampillo, P., Hertogh, C., Micallef, J.P., (1999) Puntos críticos del tirón de arrancada en halterofilia. apunts Educación Física y Deportes, 55, pp. 28-34Campos, J., Poletaev, P., Cuesta, A., Abella, C.P., Tébar, J., Estudio del movimiento de arrancada en halterofilia durante ciclos de repeticiones de alta intensidad mediante análisis cinemáticos (2004) Motricidad: revista de ciencias de la actividad física y del deporte (12), pp. 39-45Chatzitofis, A., Vretos, N., Zarpalas, D., Daras, P., Three-dimensional monitoring of weightlifting for computer assisted training. In: Proceedings of the virtual reality international conference: laval virtual. ACM (2013) p 3Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.C., Body area networks: a survey (2011) Mob Netw Appl, 16 (2), pp. 171-193Chen, S.K., Wu, M.T., Huang, C.H., Wu, J.H., Guo, L.Y., Wu, W.L., (2013) The analysis of upper limb movement and emg activation during the snatch under various loading conditions (2013) J Mech Med Biol, 13 (1), p. 010Cheng, P., Oelmann, B., Joint-angle measurement using accelerometers and gyroscopes. A survey (2010) Instrum Meas IEEE Trans, 59 (2), pp. 404-414Christ, F.L., Owen, K.G., Hudson, J.L., (1996) An exploration of balance and skill in olympic weightlifting, , In: International symposium on biomechanicsComfort, P., Allen, M., Graham-Smith, P., Comparisons of peak ground reaction force and rate of force development during variations of the power clean (2011) J Strength Cond Res, 25 (5), pp. 1235-1239Dejnabadi, H., Jolles, B.M., Aminian, K., A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes (2005) Biomed Eng IEEE Trans, 52 (8), pp. 1478-1484Diaz Parada, R., Martinez Santos, J., Study of the lower limp’s angle during weightlifting exercises using an accelerometer-based system. In: Engineering mechatronics and automation (CIIMA), 2014 III International Congress of (2014) pp 1–4Faludi, R., Building wireless sensor networks: with ZigBee. Arduino (2010) and Processing, , O’Reilly Media: XBeeFong, D.T.P., Chan, Y.Y., The use of wearable inertial motion sensors in human lower limb biomechanics studies: a systematic review (2010) Sensors, 10 (12), pp. 11556-11565Freivalds, A., Biomechanics of the upper limbs: mechanics (2004) modelling and musculoskeletal injuries, , Taylor &, FrancisGarhammer, J., Biomechanical profiles of olympic weightlifters (1985) Int J Sport Biomech, 1 (2), pp. 122-130Gourgoulis, V., Aggeloussis, N., Antoniou, P., Christoforidis, C., Mavromatis, G., Garas, A., Comparative 3-dimensional kinematic analysis of the snatch technique in elite male and female greek weightlifters (2002) J Strength Condition Res, 16 (3), pp. 359-366Harbili, E., A gender-based kinematic and kinetic analysis of the snatch lift in elite weightlifters in 69-kg category (2012) J Sports Sci Med, 11 (1), pp. 162-169Isaka, T., Okada, J., Funato, K., Kinematic analysis of the barbell during the snatch movement of elite asian weight lifters (1996) JAB, 12 (4), pp. 508-516Kutz, M., Standard handbook of biomedical engineering and design. McGraw-Hill Handbooks Series (2003) McGraw-HillLee, J.S., Su, Y.W., Shen, C.C., A comparative study of wireless protocols: Bluetooth, uwb, zigbee, and wi-fi. In: Industrial electronics society, 2007. IECON 2007. 33rd Annual Conference of the IEEE. IEEE (2007) pp 46–51(2001) In: ISBS-Conference Proceedings Archive, , Liu Y, Chen W Foot pressure study during pulling phase of snatch lifting. vol 1Lloyd, D.G., Besier, T.F., An emg-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo (2003) J Biomech, 36 (6), pp. 765-776Luca, C.J.D., Gilmore, L.D., Kuznetsov, M., Roy, S.H., Filtering the surface emg signal: movement artifact and baseline noise contamination (2010) J Biomech, 43 (8), pp. 1573-1579Mertz, L., Technology comes to the playing field: new world of sports promises fewer injuries, better performance (2013) IEEE Pulse, 4 (5), pp. 12-17Pearson, S.J., Young, A., Macaluso, A., Devito, G., Nimmo, M.A., Cobbold, M., Harridge, S.D., Muscle function in elite master weightlifters (2002) Med Sci Sports Exerc, 34 (7), pp. 1199-1206Shiffman, D., Learning processing: a beginner’s guide to programming images, animation, and interaction (2009) Morgan KaufmannVelloso, E., Bulling, A., Gellersen, H., Towards qualitative assessment of weight lifting exercises using body-worn sensors. In: Proceedings of the 13th international conference on Ubiquitous computing. ACM (2011) pp 587–588Waltz, E., The quantified olympian (2015) Spectr IEEE, 52 (6), pp. 44-45Webster, J., Medical instrumentation: application and design, 3rd edn (1997) WileyWei, G., Tian, F., Tang, G., Wang, C., A wavelet-based method to predict muscle forces from surface electromyography signals in weightlifting (2012) J Bionic Eng, 9 (1), pp. 48-58Willemsen, A.T.M., Frigo, C., Boom, H.B., Lower extremity angle measurement with accelerometers-error and sensitivity analysis (1991) Biomed Eng IEEE Trans, 38 (12), pp. 1186-1193Williamson, R., Andrews, B., Detecting absolute human knee angle and angular velocity using accelerometers and rate gyroscopes (2001) Med Biol Eng Comput, 39 (3), pp. 294-302http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8937/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8937oai:repositorio.utb.edu.co:20.500.12585/89372023-05-26 08:15:27.893Repositorio Institucional UTBrepositorioutb@utb.edu.co |