Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks

With this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied b...

Full description

Autores:
Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Rivas-Trujillo, Edwin
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/10418
Acceso en línea:
https://hdl.handle.net/20.500.12585/10418
https://doi.org/10.3390/computers10090109
Palabra clave:
Approximated mixed-integer quadratic convex model
Phase balancing problem
Asymmetric distribution networks
Triangular-based power flow method
LEMB
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id UTB2_2a90b384bedf09156684436d6bbfbb3a
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/10418
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
title Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
spellingShingle Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
Approximated mixed-integer quadratic convex model
Phase balancing problem
Asymmetric distribution networks
Triangular-based power flow method
LEMB
title_short Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
title_full Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
title_fullStr Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
title_full_unstemmed Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
title_sort Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks
dc.creator.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Rivas-Trujillo, Edwin
dc.contributor.author.none.fl_str_mv Montoya, Oscar Danilo
Grisales-Noreña, Luis Fernando
Rivas-Trujillo, Edwin
dc.subject.keywords.spa.fl_str_mv Approximated mixed-integer quadratic convex model
Phase balancing problem
Asymmetric distribution networks
Triangular-based power flow method
topic Approximated mixed-integer quadratic convex model
Phase balancing problem
Asymmetric distribution networks
Triangular-based power flow method
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description With this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied by the average resistance value of the line. As constraints are considered for the active and reactive power redistribution in all the nodes considering a 3 × 3 binary decision variable having six possible combinations, the branch and nodal current relations are related to an extended upper-triangular matrix. The solution offered by the proposed MIQC model is evaluated using the triangular-based three-phase power flow method in order to determine the final steady state of the network with respect to the number of power loss upon the application of the phase balancing approach. The numerical results in three radial test feeders composed of 8, 15, and 25 nodes demonstrated the effectiveness of the proposed MIQC model as compared to metaheuristic optimizers such as the genetic algorithm, black hole optimizer, sine–cosine algorithm, and vortex search algorithm. All simulations were carried out in MATLAB 2020a using the CVX tool and the Gurobi solver.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-08-31
dc.date.accessioned.none.fl_str_mv 2022-01-28T20:00:12Z
dc.date.available.none.fl_str_mv 2022-01-28T20:00:12Z
dc.date.submitted.none.fl_str_mv 2022-01-27
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasVersion.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.citation.spa.fl_str_mv Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/10418
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/computers10090109
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/10418
https://doi.org/10.3390/computers10090109
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessRights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 Páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.source.spa.fl_str_mv Computers - vol. 10 n° 9 (2021)
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/1/%5bArt.%2039%5d%20Approximated%20Mixed-Integer%20Convex%20M_Oscar%20Danilo%20Montoya.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/4/%5bArt.%2039%5d%20Approximated%20Mixed-Integer%20Convex%20M_Oscar%20Danilo%20Montoya.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/5/%5bArt.%2039%5d%20Approximated%20Mixed-Integer%20Convex%20M_Oscar%20Danilo%20Montoya.pdf.jpg
bitstream.checksum.fl_str_mv 7193d7ea104b4bf9f82247449ef688cd
4460e5956bc1d1639be9ae6146a50347
e20ad307a1c5f3f25af9304a7a7c86b6
eac027f554e865e08f1a69044f1f73a8
b47d7dd7ac21a7f7c95abf7399efbacc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021784518787072
spelling Montoya, Oscar Danilo8a59ede1-6a4a-4d2e-abdc-d0afb14d4480Grisales-Noreña, Luis Fernando7c27cda4-5fe4-4686-8f72-b0442c58a5d1Rivas-Trujillo, Edwin0720b1ee-acdc-4aea-b24b-fc319c4dd61c2022-01-28T20:00:12Z2022-01-28T20:00:12Z2021-08-312022-01-27Montoya, O.D.; Grisales-Noreña, L.F.; Rivas-Trujillo, E. Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks. Computers 2021, 10, 109. https://doi.org/10.3390/computers10090109https://hdl.handle.net/20.500.12585/10418https://doi.org/10.3390/computers10090109Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarWith this study, we address the optimal phase balancing problem in three-phase networks with asymmetric loads in reference to a mixed-integer quadratic convex (MIQC) model. The objective function considers the minimization of the sum of the square currents through the distribution lines multiplied by the average resistance value of the line. As constraints are considered for the active and reactive power redistribution in all the nodes considering a 3 × 3 binary decision variable having six possible combinations, the branch and nodal current relations are related to an extended upper-triangular matrix. The solution offered by the proposed MIQC model is evaluated using the triangular-based three-phase power flow method in order to determine the final steady state of the network with respect to the number of power loss upon the application of the phase balancing approach. The numerical results in three radial test feeders composed of 8, 15, and 25 nodes demonstrated the effectiveness of the proposed MIQC model as compared to metaheuristic optimizers such as the genetic algorithm, black hole optimizer, sine–cosine algorithm, and vortex search algorithm. All simulations were carried out in MATLAB 2020a using the CVX tool and the Gurobi solver.12 Páginasapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Computers - vol. 10 n° 9 (2021)Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/resource_type/c_2df8fbb1Approximated mixed-integer quadratic convex modelPhase balancing problemAsymmetric distribution networksTriangular-based power flow methodLEMBCartagena de IndiasGarces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids. Appl. Sci. 2021, 11, 1972, doi:10.3390/app11051972Ma, K.; Fang, L.; Kong, W. Review of distribution network phase unbalance: Scale, causes, consequences, solutions, and future research direction. CSEE J. Power Energy Syst. 2020, 6, 479–488, doi:10.17775/cseejpes.2019.03280.Montoya, O.D.; Molina-Cabrera, A.; Grisales-Noreña, L.F.; Hincapié, R.A.; Granada, M. Improved Genetic Algorithm for Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach. Computation 2021, 9, 67, doi:10.3390/computation9060067.Kong, W.; Ma, K.; Fang, L.; Wei, R.; Li, F. Cost-Benefit Analysis of Phase Balancing Solution for Data-Scarce LV Networks by Cluster-Wise Gaussian Process Regression. IEEE Trans. Power Syst. 2020, 35, 3170–3180, doi:10.1109/tpwrs.2020.2966601.Granada, M.; Gallego, R.A.; López, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Y Cienc. 2012, 8, 121–140, doi:10.17230/ingciencia.8.15.6Montoya, O.D.; Giraldo, J.S.; Grisales-Noreña, L.F.; Chamorro, H.R.; Alvarado-Barrios, L. Accurate and Efficient Derivative-Free Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation 2021, 9, 61, doi:10.3390/computation9060061.Tuppadung, Y.; Kurutach, W. The Modified Particle Swarm Optimization for Phase Balancing. In Proceedings of the TENCON 2006-2006 IEEE Region 10 Conference, Hong Kong, China, 14–17 November 2006; doi:10.1109/tencon.2006.344014.Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282, doi:10.3390/en14051282Zhu, J.; Bilbro, G.; Chow, M.Y. Phase balancing using simulated annealing. IEEE Trans. Power Syst. 1999, 14, 1508–1513, doi:10.1109/59.801943.Sathiskumar, M.; kumar, A.N.; Lakshminarasimman, L.; Thiruvenkadam, S. A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system. Int. J. Electr. Power Energy Syst. 2012, 42, 91–97, doi:10.1016/j.ijepes.2012.03.029Montoya, O.D.; Arias-Londoño, A.; Grisales-Noreña, L.F.; Barrios, J.Á.; Chamorro, H.R. Optimal Demand Reconfiguration in Three-Phase Distribution Grids Using an MI-Convex Model. Symmetry 2021, 13, 1124, doi:10.3390/sym13071124Sur, U.; Sarkar, G. A Sufficient Condition for Multiple Load Flow Solutions Existence in Three Phase Unbalanced Active Distribution Networks. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 784–788, doi:10.1109/tcsii.2017.2751542Cortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Álvarez-Arroyo, C. An Improved Crow Search Algorithm Applied to the Phase Swapping Problem in Asymmetric Distribution Systems. Symmetry 2021, 13, 1329, doi:10.3390/sym13081329.Benson, H.Y.; Sa ˘glam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36, doi:10.1287/educ.2013.0115.Sereeter, B.; Vuik, K.; Witteveen, C. Newton Power Flow Methods for Unbalanced Three-Phase Distribution Networks. Energies 2017, 10, 1658, doi:10.3390/en10101658.Shen, T.; Li, Y.; Xiang, J. A Graph-Based Power Flow Method for Balanced Distribution Systems. Energies 2018, 11, 511, doi:10.3390/en11030511Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243, doi:10.1016/j.epsr.2018.12.026.Montoya, O.D.; Alarcon-Villamil, J.A.; Hernández, J.C. Operating Cost Reduction in Distribution Networks Based on the Optimal Phase-Swapping including the Costs of the Working Groups and Energy Losses. Energies 2021, 14, 4535, doi:10.3390/en1415453. Kayabekir, A.E.; Nigdeli, M. Statistical Evaluation of Metaheuristic Algorithm: An Optimum Reinforced Concrete T-beam Problem. In Advances in Structural Engineering—Optimization; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 299–310, doi:10.1007/978-3-030-61848-3_11.Chicco, G.; Mazza, A. Metaheuristic Optimization of Power and Energy Systems: Underlying Principles and Main Issues of the ‘Rush to Heuristics’. Energies 2020, 13, 5097, doi:10.3390/en13195097.http://purl.org/coar/resource_type/c_2df8fbb1ORIGINAL[Art. 39] Approximated Mixed-Integer Convex M_Oscar Danilo Montoya.pdf[Art. 39] Approximated Mixed-Integer Convex M_Oscar Danilo Montoya.pdfapplication/pdf284901https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/1/%5bArt.%2039%5d%20Approximated%20Mixed-Integer%20Convex%20M_Oscar%20Danilo%20Montoya.pdf7193d7ea104b4bf9f82247449ef688cdMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXT[Art. 39] Approximated Mixed-Integer Convex M_Oscar Danilo Montoya.pdf.txt[Art. 39] Approximated Mixed-Integer Convex M_Oscar Danilo Montoya.pdf.txtExtracted texttext/plain39963https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/4/%5bArt.%2039%5d%20Approximated%20Mixed-Integer%20Convex%20M_Oscar%20Danilo%20Montoya.pdf.txteac027f554e865e08f1a69044f1f73a8MD54THUMBNAIL[Art. 39] Approximated Mixed-Integer Convex M_Oscar Danilo Montoya.pdf.jpg[Art. 39] Approximated Mixed-Integer Convex M_Oscar Danilo Montoya.pdf.jpgGenerated Thumbnailimage/jpeg100775https://repositorio.utb.edu.co/bitstream/20.500.12585/10418/5/%5bArt.%2039%5d%20Approximated%20Mixed-Integer%20Convex%20M_Oscar%20Danilo%20Montoya.pdf.jpgb47d7dd7ac21a7f7c95abf7399efbaccMD5520.500.12585/10418oai:repositorio.utb.edu.co:20.500.12585/104182022-01-29 02:26:27.698Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=