Density of the level sets of the metric mean dimension for homeomorphisms

Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set co...

Full description

Autores:
Muentes Acevedo, Jeovanny de Jesus
Romaña Ibarra, Sergio
Arias Cantillo, Raibel
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12632
Acceso en línea:
https://hdl.handle.net/20.500.12585/12632
https://doi.org/10.1007/s10884-023-10344-5
Palabra clave:
Mean dimension
Metric mean dimension
Topological entropy
Genericity
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id UTB2_2a463b8bc96df113146fb6403679e3f8
oai_identifier_str oai:repositorio.utb.edu.co:20.500.12585/12632
network_acronym_str UTB2
network_name_str Repositorio Institucional UTB
repository_id_str
dc.title.spa.fl_str_mv Density of the level sets of the metric mean dimension for homeomorphisms
title Density of the level sets of the metric mean dimension for homeomorphisms
spellingShingle Density of the level sets of the metric mean dimension for homeomorphisms
Mean dimension
Metric mean dimension
Topological entropy
Genericity
LEMB
title_short Density of the level sets of the metric mean dimension for homeomorphisms
title_full Density of the level sets of the metric mean dimension for homeomorphisms
title_fullStr Density of the level sets of the metric mean dimension for homeomorphisms
title_full_unstemmed Density of the level sets of the metric mean dimension for homeomorphisms
title_sort Density of the level sets of the metric mean dimension for homeomorphisms
dc.creator.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
Romaña Ibarra, Sergio
Arias Cantillo, Raibel
dc.contributor.author.none.fl_str_mv Muentes Acevedo, Jeovanny de Jesus
Romaña Ibarra, Sergio
Arias Cantillo, Raibel
dc.subject.keywords.spa.fl_str_mv Mean dimension
Metric mean dimension
Topological entropy
Genericity
topic Mean dimension
Metric mean dimension
Topological entropy
Genericity
LEMB
dc.subject.armarc.none.fl_str_mv LEMB
description Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N).
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-12-10
dc.date.accessioned.none.fl_str_mv 2024-02-12T15:47:28Z
dc.date.available.none.fl_str_mv 2024-02-12T15:47:28Z
dc.date.submitted.none.fl_str_mv 2024-02-12
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.spa.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str draft
dc.identifier.citation.spa.fl_str_mv Acevedo, J.M., Romaña, S. & Arias, R. Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10344-5
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12585/12632
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10884-023-10344-5
dc.identifier.instname.spa.fl_str_mv Universidad Tecnológica de Bolívar
dc.identifier.reponame.spa.fl_str_mv Repositorio Universidad Tecnológica de Bolívar
identifier_str_mv Acevedo, J.M., Romaña, S. & Arias, R. Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10344-5
Universidad Tecnológica de Bolívar
Repositorio Universidad Tecnológica de Bolívar
url https://hdl.handle.net/20.500.12585/12632
https://doi.org/10.1007/s10884-023-10344-5
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.cc.*.fl_str_mv CC0 1.0 Universal
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
CC0 1.0 Universal
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 14 páginas
dc.format.mimetype.spa.fl_str_mv application/http
dc.publisher.place.spa.fl_str_mv Cartagena de Indias
dc.publisher.sede.spa.fl_str_mv Campus Tecnológico
dc.source.spa.fl_str_mv Journal of Dynamics and Differential Equations
institution Universidad Tecnológica de Bolívar
bitstream.url.fl_str_mv https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/1/s10884-023-10344-5.pdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/2/license_rdf
https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/3/license.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/4/s10884-023-10344-5.pdf.txt
https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/5/s10884-023-10344-5.pdf.jpg
bitstream.checksum.fl_str_mv 7faca5224c9a40957a7c694e0f6a0c83
42fd4ad1e89814f5e4a476b409eb708c
e20ad307a1c5f3f25af9304a7a7c86b6
b044dcf907cad55b35ef3a62bdca150c
774f853fb6aa20486c8e0171f446d8cf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional UTB
repository.mail.fl_str_mv repositorioutb@utb.edu.co
_version_ 1814021789949362176
spelling Muentes Acevedo, Jeovanny de Jesusec5c0208-d53f-44d4-a347-fdb3d28db2abRomaña Ibarra, Sergio246f5889-e109-4574-bb68-7bb66e7f17c7Arias Cantillo, Raibel84adec42-1fd2-44b8-8e80-5f44485619c12024-02-12T15:47:28Z2024-02-12T15:47:28Z2023-12-102024-02-12Acevedo, J.M., Romaña, S. & Arias, R. Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10344-5https://hdl.handle.net/20.500.12585/12632https://doi.org/10.1007/s10884-023-10344-5Universidad Tecnológica de BolívarRepositorio Universidad Tecnológica de BolívarLet N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N).14 páginasapplication/httpenghttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccessCC0 1.0 Universalhttp://purl.org/coar/access_right/c_abf2Journal of Dynamics and Differential EquationsDensity of the level sets of the metric mean dimension for homeomorphismsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/drafthttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_2df8fbb1Mean dimensionMetric mean dimensionTopological entropyGenericityLEMBCartagena de IndiasCampus TecnológicoPúblico generalAcevedo, J.M., Romaña, S., Arias, R.: Hölder continuous maps on the interval with positive metric mean dimension. Rev. Colomb. de Math. 57, 57–76 (2024)Acevedo, J.M.: Genericity of continuous maps with positive metric mean dimension. RM 77(1), 2 (2022)Acevedo, J.M., Baraviera, A., Becker, A.J., Scopel É.: Metric mean dimension and mean Hausdorff dimension varying the metric. (2024)Artin M., Mazur B.: On periodic points. Ann. Math. pp. 82-99 (1965)Carvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergodic Theory Dynam. Syst. 42(1), 40–64 (2022)Gutman, Y., Tsukamoto, M.: Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 221(1), 113–166 (2020)Hurley, M.: On proofs of the general density theorem. Proceed. Amer. Math. Soci. 124(4), 1305–1309 (1996)Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)Lindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019)Lindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory 64(5), 3590–3609 (2018)Lindenstrauss, E., Tsukamoto, M.: Mean dimension and an embedding problem: an example. Israel J. Math. 199(2), 573–584 (2014)Shinoda, M., Tsukamoto, M.: Symbolic dynamics in mean dimension theory. Ergodic Theory Dynam. Syst. 41(8), 2542–2560 (2021)Tsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230, 183–193 (2019)Velozo A., Velozo R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)Yano, K.: A remark on the topological entropy of homeomorphisms. Invent. Math. 59(3), 215–220 (1980)http://purl.org/coar/resource_type/c_2df8fbb1ORIGINALs10884-023-10344-5.pdfs10884-023-10344-5.pdfArtículo principalapplication/pdf547836https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/1/s10884-023-10344-5.pdf7faca5224c9a40957a7c694e0f6a0c83MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83182https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/3/license.txte20ad307a1c5f3f25af9304a7a7c86b6MD53TEXTs10884-023-10344-5.pdf.txts10884-023-10344-5.pdf.txtExtracted texttext/plain31336https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/4/s10884-023-10344-5.pdf.txtb044dcf907cad55b35ef3a62bdca150cMD54THUMBNAILs10884-023-10344-5.pdf.jpgs10884-023-10344-5.pdf.jpgGenerated Thumbnailimage/jpeg6289https://repositorio.utb.edu.co/bitstream/20.500.12585/12632/5/s10884-023-10344-5.pdf.jpg774f853fb6aa20486c8e0171f446d8cfMD5520.500.12585/12632oai:repositorio.utb.edu.co:20.500.12585/126322024-02-14 00:16:50.11Repositorio Institucional UTBrepositorioutb@utb.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLgoKQWwgcmVzcGVjdG8gY29tbyBBdXRvcihlcykgbWFuaWZlc3RhbW9zIGNvbm9jZXIgcXVlOgoKLSBMYSBhdXRvcml6YWNpw7NuIGVzIGRlIGNhcsOhY3RlciBubyBleGNsdXNpdmEgeSBsaW1pdGFkYSwgZXN0byBpbXBsaWNhIHF1ZSBsYSBsaWNlbmNpYSB0aWVuZSB1bmEgdmlnZW5jaWEsIHF1ZSBubyBlcyBwZXJwZXR1YSB5IHF1ZSBlbCBhdXRvciBwdWVkZSBwdWJsaWNhciBvIGRpZnVuZGlyIHN1IG9icmEgZW4gY3VhbHF1aWVyIG90cm8gbWVkaW8sIGFzw60gY29tbyBsbGV2YXIgYSBjYWJvIGN1YWxxdWllciB0aXBvIGRlIGFjY2nDs24gc29icmUgZWwgZG9jdW1lbnRvLgoKLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uCgotIExhIGF1dG9yaXphY2nDs24gZGUgcHVibGljYWNpw7NuIGNvbXByZW5kZSBlbCBmb3JtYXRvIG9yaWdpbmFsIGRlIGxhIG9icmEgeSB0b2RvcyBsb3MgZGVtw6FzIHF1ZSBzZSByZXF1aWVyYSBwYXJhIHN1IHB1YmxpY2FjacOzbiBlbiBlbCByZXBvc2l0b3Jpby4gSWd1YWxtZW50ZSwgbGEgYXV0b3JpemFjacOzbiBwZXJtaXRlIGEgbGEgaW5zdGl0dWNpw7NuIGVsIGNhbWJpbyBkZSBzb3BvcnRlIGRlIGxhIG9icmEgY29uIGZpbmVzIGRlIHByZXNlcnZhY2nDs24gKGltcHJlc28sIGVsZWN0csOzbmljbywgZGlnaXRhbCwgSW50ZXJuZXQsIGludHJhbmV0LCBvIGN1YWxxdWllciBvdHJvIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikuCgotIExhIGF1dG9yaXphY2nDs24gZXMgZ3JhdHVpdGEgeSBzZSByZW51bmNpYSBhIHJlY2liaXIgY3VhbHF1aWVyIHJlbXVuZXJhY2nDs24gcG9yIGxvcyB1c29zIGRlIGxhIG9icmEsIGRlIGFjdWVyZG8gY29uIGxhIGxpY2VuY2lhIGVzdGFibGVjaWRhIGVuIGVzdGEgYXV0b3JpemFjacOzbi4KCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLgoKLSBGcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHBvciB0ZXJjZXJvcywgZWwgbyBsb3MgYXV0b3JlcyBzZXLDoW4gcmVzcG9uc2FibGVzLCBlbiBuaW5nw7puIGNhc28gbGEgcmVzcG9uc2FiaWxpZGFkIHNlcsOhIGFzdW1pZGEgcG9yIGxhIGluc3RpdHVjacOzbi4KCi0gQ29uIGxhIGF1dG9yaXphY2nDs24sIGxhIGluc3RpdHVjacOzbiBwdWVkZSBkaWZ1bmRpciBsYSBvYnJhIGVuIMOtbmRpY2VzLCBidXNjYWRvcmVzIHkgb3Ryb3Mgc2lzdGVtYXMgZGUgaW5mb3JtYWNpw7NuIHF1ZSBmYXZvcmV6Y2FuIHN1IHZpc2liaWxpZGFkCgo=