Density of the level sets of the metric mean dimension for homeomorphisms

Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set co...

Full description

Autores:
Muentes Acevedo, Jeovanny de Jesus
Romaña Ibarra, Sergio
Arias Cantillo, Raibel
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Tecnológica de Bolívar
Repositorio:
Repositorio Institucional UTB
Idioma:
eng
OAI Identifier:
oai:repositorio.utb.edu.co:20.500.12585/12632
Acceso en línea:
https://hdl.handle.net/20.500.12585/12632
https://doi.org/10.1007/s10884-023-10344-5
Palabra clave:
Mean dimension
Metric mean dimension
Topological entropy
Genericity
LEMB
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
Description
Summary:Let N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N).