Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction
In this work we extend the results of [1] where, Semiclassical Selfconsistent Configurations (SSC) formalism was introduced. The scheme combines quantum field theory on a background space-time, semiclassical treatment of gravitation and spontaneous collapse theories. The approach is applied to the c...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8871
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8871
- Palabra clave:
- Inflation
Primordial gravitational waves (theory)
Quantum field theory on curved space
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_27a9337240c5f080f04dfc1c07edb85e |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8871 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction |
title |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction |
spellingShingle |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction Inflation Primordial gravitational waves (theory) Quantum field theory on curved space |
title_short |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction |
title_full |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction |
title_fullStr |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction |
title_full_unstemmed |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction |
title_sort |
Semiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order construction |
dc.subject.keywords.none.fl_str_mv |
Inflation Primordial gravitational waves (theory) Quantum field theory on curved space |
topic |
Inflation Primordial gravitational waves (theory) Quantum field theory on curved space |
description |
In this work we extend the results of [1] where, Semiclassical Selfconsistent Configurations (SSC) formalism was introduced. The scheme combines quantum field theory on a background space-time, semiclassical treatment of gravitation and spontaneous collapse theories. The approach is applied to the context of early universe cosmology using a formal description of the transition from an initial inflationary stage characterized by a spatially homogeneous and isotropic (H&I) universe, to another where inhomogeneities are present in association with quantum fluctuations of the field driving inflation. In that work two constructions are produced. One of them describes a universe that is completely spatially homogeneous and isotropic, and the other is characterized by a slight excitation of the particular inhomogeneous and anisotropic perturbation. Finally, a characterization of their gluing to each other is provided as representing the transition as a result from a spontaneous collapse of the state of the quantum field, following the hypothesis originally introduced in [2]. Specifically, in [1] this construction is carried out by using cosmological perturbation theory and working up to linear order in the perturbation. However, given the nonlinear nature of gravitation, we should in principle explore the application of the formalism in a nonlinear regime. To this end and as a first step, we study in this work the transition from a spatially homogeneous and isotropic (H&I) Semiclassical Self-Consistent Configuration (SSC-I) to one SSC-II that is not spatially (H&I), working this time up to second order in perturbation theory. We find that the self consistent construction now requires consideration of the so called tensor modes, as well as a nontrivial mixing of modes that made the analysis much more difficult and which could not a priori be warranted to work out in detail. The present work shows that this is indeed the case. © 2018 IOP Publishing Ltd and Sissa Medialab. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:32Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Journal of Cosmology and Astroparticle Physics; Vol. 2018, Núm. 8 |
dc.identifier.issn.none.fl_str_mv |
14757516 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8871 |
dc.identifier.doi.none.fl_str_mv |
10.1088/1475-7516/2018/08/043 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
55744418600 8840673300 7003779083 |
identifier_str_mv |
Journal of Cosmology and Astroparticle Physics; Vol. 2018, Núm. 8 14757516 10.1088/1475-7516/2018/08/043 Universidad Tecnológica de Bolívar Repositorio UTB 55744418600 8840673300 7003779083 |
url |
https://hdl.handle.net/20.500.12585/8871 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Physics Publishing |
publisher.none.fl_str_mv |
Institute of Physics Publishing |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053141793&doi=10.1088%2f1475-7516%2f2018%2f08%2f043&partnerID=40&md5=4fb3da2fb08736e4ad52d8b86352083c |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8871/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021801818193920 |
spelling |
2020-03-26T16:32:32Z2020-03-26T16:32:32Z2018Journal of Cosmology and Astroparticle Physics; Vol. 2018, Núm. 814757516https://hdl.handle.net/20.500.12585/887110.1088/1475-7516/2018/08/043Universidad Tecnológica de BolívarRepositorio UTB5574441860088406733007003779083In this work we extend the results of [1] where, Semiclassical Selfconsistent Configurations (SSC) formalism was introduced. The scheme combines quantum field theory on a background space-time, semiclassical treatment of gravitation and spontaneous collapse theories. The approach is applied to the context of early universe cosmology using a formal description of the transition from an initial inflationary stage characterized by a spatially homogeneous and isotropic (H&I) universe, to another where inhomogeneities are present in association with quantum fluctuations of the field driving inflation. In that work two constructions are produced. One of them describes a universe that is completely spatially homogeneous and isotropic, and the other is characterized by a slight excitation of the particular inhomogeneous and anisotropic perturbation. Finally, a characterization of their gluing to each other is provided as representing the transition as a result from a spontaneous collapse of the state of the quantum field, following the hypothesis originally introduced in [2]. Specifically, in [1] this construction is carried out by using cosmological perturbation theory and working up to linear order in the perturbation. However, given the nonlinear nature of gravitation, we should in principle explore the application of the formalism in a nonlinear regime. To this end and as a first step, we study in this work the transition from a spatially homogeneous and isotropic (H&I) Semiclassical Self-Consistent Configuration (SSC-I) to one SSC-II that is not spatially (H&I), working this time up to second order in perturbation theory. We find that the self consistent construction now requires consideration of the so called tensor modes, as well as a nontrivial mixing of modes that made the analysis much more difficult and which could not a priori be warranted to work out in detail. The present work shows that this is indeed the case. © 2018 IOP Publishing Ltd and Sissa Medialab.Consejo Nacional de Ciencia y Tecnología: 101712 IG100316DS acknowledges partial financial support from DGAPA-UNAM project IG100316 and by CONACyT project 101712, as well as the sabbatical fellowship from CO-MEX-US (Fullbright-Garcia Robles) and from DGAPA-UNAM (Paspa). ER is grateful to FAPEMIG for supporting her visit in 2016 to the Federal University of Juiz de Fora, MG, Brazil, where part of this work was done.Recurso electrónicoapplication/pdfengInstitute of Physics Publishinghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053141793&doi=10.1088%2f1475-7516%2f2018%2f08%2f043&partnerID=40&md5=4fb3da2fb08736e4ad52d8b86352083cSemiclassical self consistent treatment of the emergence of seeds of cosmic structure. the second order constructioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1InflationPrimordial gravitational waves (theory)Quantum field theory on curved spaceCañate P.Ramirez E.Sudarsky D.Diez-Tejedor, A., Sudarsky, D., Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure (2012) J. Cosmol. Astropart. Phys., 2012 (7), p. 045. , 2012 [1108.4928]Perez, A., Sahlmann, H., Sudarsky, D., On the quantum origin of the seeds of cosmic structure (2006) Class. Quant. Grav., 23 (7), p. 2317. , https://doi.org/10.1088/0264-9381/23/7/008, [gr-qc/0508100]Wheeler, J.A., Superspace and the nature of quantum geometrodynamics (1968) Battelle Rencontres: 1967 Lectures in MAthematics and Physics, pp. 284-289. , C.M. de Witt and eds., W.A. Benjamin, New York espRovelli, C., (2007) Quantum Gravity, p. 484. , Cambridge University Press, Cambridge, U.KCarlip, S., Is Quantum Gravity Necessary? (2008) Class. Quant. Grav., 25 (15), p. 154010. , https://doi.org/10.1088/0264-9381/25/15/154010, [0803.3456]Page, D.N., Geilker, C.D., Indirect Evidence for Quantum Gravity (1981) Phys. Rev. Lett., 47, p. 979. , https://doi.org/10.1103/PhysRevLett.47.979Gambini, R., Pullin, J., Nonstandard optics from quantum space-time (1999) Phys. Rev., 59, p. 124021. , https://doi.org/10.1103/PhysRevD.59.124021, [gr-qc/9809038]Kozameh, C.N., Parisi, M.F., Lorentz invariance and the semiclassical approximation of loop quantum gravity (2004) Class. Quant. Grav., 21 (11), p. 2617. , https://doi.org/10.1088/0264-9381/21/11/007, [gr-qc/0310014]Alfaro, J., Morales-Tecotl, H.A., Urrutia, L.F., Quantum gravity and spin 1/2 particles effective dynamics (2002) Phys. Rev., 66, p. 124006. , https://doi.org/10.1103/PhysRevD.66.124006, [hep-th/0208192]Collins, J., Pérez, A., Sudarsky, D., Urrutia, L., Vucetich, H., Lorentz invariance and quantum gravity: An additional fine-tuning problem? (2004) Phys. Rev. Lett., 93, p. 191301. , https://doi.org/10.1103/PhysRevLett.93.191301, [gr-qc/0403053]Pearle, P.M., Combining Stochastic Dynamical State Vector Reduction with Spontaneous Localization (1989) Phys. Rev., 39, p. 2277. , https://doi.org/10.1103/PhysRevA.39.2277Pearle, P., How Stands Collapse i (2006) J. Phys., 40, p. 3189. , [quant-ph/0611211]Ghirardi, G.C., Pearle, P.M., Rimini, A., Markov Processes in Hilbert Space and Continuous Spontaneous Localization of Systems of Identical Particles (1990) Phys. Rev., 42, p. 78. , https://doi.org/10.1103/PhysRevA.42.78Penrose, R., On gravity's role in quantum state reduction (1996) Gen. Rel. Grav., 28, p. 581. , https://doi.org/10.1007/BF0210506828581Penrose, R., (1989) The Emperor's New Mind, , Oxford University PressCañate, P., Pearle, P., Sudarsky, D., Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation (2013) Phys. Rev., 87, p. 104024. , https://doi.org/10.1103/PhysRevD.87.104024, [1211.3463]De Unánue, A., Sudarsky, D., Phenomenological analysis of quantum collapse as source of the seeds of cosmic structure (2008) Phys. Rev., 78, p. 043510. , https://doi.org/10.1103/PhysRevD.78.043510, [0801.4702]León, G., Sudarsky, D., The Slow roll condition and the amplitude of the primordial spectrum of cosmic fluctuations: Contrasts and similarities of standard account and the 'collapse scheme' (2010) Class. Quant. Grav., 27 (22), p. 225017. , https://doi.org/10.1088/0264-9381/27/22/225017, [1003.5950]Sudarsky, D., The Seeds of Cosmic structure as a door to New Physics (2007) J. Phys. Conf. Ser., 68 (1), p. 012029. , https://doi.org/10.1088/1742-6596/68/1/012029, [gr-qc/0612005]Sudarsky, D., A path towards quantum gravity phenomenology (2007) J. Phys. Conf. Ser., 66 (1), p. 012037. , https://doi.org/10.1088/1742-6596/66/1/012037Sudarsky, D., A Signature of quantum gravity at the source of the seeds of cosmic structure? (2007) J. Phys. Conf. Ser., 67 (1), p. 012054. , https://doi.org/10.1088/1742-6596/67/1/012054, [gr-qc/0701071]Sudarsky, D., The Seeds of Cosmic Structures As A Door to Quantum Gravity Phenomena, , POS(QG-PH)038 [0712.2795]Landau, S., León, G., Sudarsky, D., Quantum Origin of the Primordial Fluctuation Spectrum and its Statistics (2013) Phys. Rev., 88, p. 023526. , https://doi.org/10.1103/PhysRevD.88.023526, [1107.3054]Kiefer, C., Polarski, D., Why do cosmological perturbations look classical to us? (2009) Adv. Sci. Lett., 2, p. 164. , https://doi.org/10.1166/asl.2009.1023, [0810.0087]Sudarsky, D., Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical (2011) Int. J. Mod. Phys., 20, p. 509. , https://doi.org/10.1142/S0218271811018937, [0906.0315]Albrecht, A., Ferreira, P., Joyce, M., Prokopec, T., Inflation and squeezed quantum states (1994) Phys. Rev., 50, p. 4807. , https://doi.org/10.1103/PhysRevD.50.4807, [astro-ph/9303001]Polarski, D., Starobinsky, A.A., Semiclassicality and decoherence of cosmological perturbations (1996) Class. Quant. Grav., 13 (3), p. 377. , https://doi.org/10.1088/0264-9381/13/3/006, [gr-qc/9504030]Weinberg, S., (2008) Cosmology, , Oxford University PressMukhanov, V., (2005) Physical Foundations of Cosmology, , Cambridge University PressHollands, S., Wald, R.M., An Alternative to inflation (2002) Gen. Rel. Grav., 34, p. 2043. , https://doi.org/10.1023/A:1021175216055, [gr-qc/0205058]Bengochea, G.R., Cañate, P., Sudarsky, D., Inhomogeneities from quantum collapse scheme without inflation (2015) Phys. Lett., 743, p. 484. , https://doi.org/10.1016/j.physletb.2015.03.016, [1410.4212]Bardeen, J.M., Gauge Invariant Cosmological Perturbations (1980) Phys. Rev., 22, p. 1882. , https://doi.org/10.1103/PhysRevD.22.1882Diez-Tejedor, A., León, G., Sudarsky, D., The Collapse of the wave function in the joint metric-matter quantization for inflation (2012) Gen. Rel. Grav., 44, p. 2965. , https://doi.org/10.1007/s10714-012-1433-5, [1106.1176]Martin, J., Vennin, V., Peter, P., Cosmological Inflation and the Quantum Measurement Problem (2012) Phys. Rev., 86, p. 103524. , https://doi.org/10.1103/PhysRevD.86.103524, [1207.2086]Das, S., Lochan, K., Sahu, S., Singh, T.P., Quantum to classical transition of inflationary perturbations: Continuous spontaneous localization as a possible mechanism (2013) Phys. Rev., 88, p. 085020. , https://doi.org/10.1103/PhysRevD.89.109902, [1304.5094]Bassi, A., Lochan, K., Satin, S., Singh, T.P., Ulbricht, H., Models of Wave-function Collapse, Underlying Theories and Experimental Tests (2013) Rev. Mod. Phys., 85, p. 471. , https://doi.org/10.1103/RevModPhys.85.471, [1204.4325]Okon, E., Sudarsky, D., Benefits of Objective Collapse Models for Cosmology and Quantum Gravity (2014) Found. Phys., 44, p. 114. , https://doi.org/10.1007/s10701-014-9772-6, [1309.1730]Castagnino, M., Fortin, S., Laura, R., Sudarsky, D., Interpretations of Quantum Theory in the Light of Modern Cosmology (2017) Found. Phys., 47, p. 1387. , https://doi.org/10.1007/s10701-017-0100-9, [1412.7576]Wald, R.M., (1984) General Relativity, p. 506. , University of Chicago PressDiósi, L., Gravitation and quantummechanical localization of macroobjects (1984) Phys. Lett., 105, p. 199. , https://doi.org/10.1016/0375-9601(84)90397-9, [1412.0201]Van Meter, J.R., Schrödinger-Newton 'collapse' of the wave function (2011) Class. Quant. Grav., 28 (21), p. 215013. , https://doi.org/10.1088/0264-9381/28/21/215013, [1105.1579]Bedingham, D.J., Relativistic State Reduction Dynamics (2011) Found Phys., 41 (4), p. 686. , [1003.2772]Bedingham, D.J., Relativistic state reduction model (2011) J. Phys. Conf. Ser., 306 (1). , [1103.3974]Pearle, P., Collapse models (1999) Open Systems and Measurement in Relativistic Quantum Theory, 526, p. 195. , H.P. Breuer and F. Petruccione eds., Lect. Notes Phys., Springer, Berlin, HeidelbergPearle, P., How Stands Collapse II (2007) J. Phys., 40, p. 3189. , [quant-ph/0611212]Myrvold, W.C., On peaceful coexistence: Is the collapse postulate incompatible with relativity? (2002) Stud. Hist. Phil. Mod. Phys., 33, p. 435Tumulka, R., A relativistic version of the Ghirardi-Rimini-Weber model (2006) J. Stat. Phys., 125, p. 821Pearle, P., Relativistic dynamical collapse model (2015) Phys. Rev., 91, p. 105012. , https://doi.org/10.1103/PhysRevD.91.105012, [1412.6723]Bedingham, D., Modak, S.K., Sudarsky, D., Relativistic collapse dynamics and black hole information loss (2016) Phys. Rev., 94, p. 045009. , https://doi.org/10.1103/PhysRevD.94.045009, [1604.06537]Israel, W., Singular hypersurfaces and thin shells in general relativity (1966) Nuovo Cim., 4410, p. 1. , https://doi.org/10.1007/BF02710419B44S101, [Erratum ibid B 48 (1967) 463]Juárez-Aubry, B.A., Kay, B.S., Miramontes, T., Sudarsky, D., On the Initial Value Formulation of Semi-classical Gravity and Theories with Spontaneous Reduction of the Quantum State, , preparationCañate, P., (2015) Reducción de la Función de Onda en El Contexto Cosmológico y El Surgimiento de Las Inhomogeneidades Primordiales, , Ph.D. Thesis, Universidad Nacional AutoacuteWald, R.M., Trace Anomaly of a Conformally Invariant Quantum Field in Curved Space-Time (1978) Phys. Rev., 17, p. 1477. , https://doi.org/10.1103/PhysRevD.17.1477Wald, R.M., (1994) Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics, , University Chicago Press, ChicagoDecanini, Y., Folacci, A., Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension (2008) Phys. Rev., 78, p. 044025. , https://doi.org/10.1103/PhysRevD.78.044025, [gr-qc/0512118]Juárez-Aubry, B.A., Kay, B.S., Sudarsky, D., Generally covariant dynamical reduction models and the Hadamard condition (2018) Phys. Rev., 97, p. 025010. , https://doi.org/10.1103/PhysRevD.97.025010, [1708.09371]rez Aubry, private communicationStewart, J.M., Walker, M., Perturbations of space-times in general relativity (1974) Proc. Roy. Soc. Lond., 34, p. 49Bertschinger, E., Cosmological Dynamics: Course 1 (1993) Proceedings, les Houches Summer School on Cosmology and Large Scale Structure (Session 60), pp. 273-348. , Les Houches, France, August 1-28, 1993, pp. [astro-ph/9503125]Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H., Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions (1992) Phys. Rept., 215, p. 203. , https://doi.org/10.1016/0370-1573(92)90044-ZMalik, K.A., Wands, D., Cosmological perturbations (2009) Phys. Rept., 475, p. 1. , https://doi.org/10.1016/j.physrep.2009.03.001, [0809.4944]Nakamura, K., Gauge invariant variables in two parameter nonlinear perturbations (2003) Prog. Theor. Phys., 110, p. 723. , https://doi.org/10.1143/PTP.110.723, [gr-qc/0303090]Acquaviva, V., Bartolo, N., Matarrese, S., Riotto, A., Second order cosmological perturbations from inflation (2003) Nucl. Phys., 667, p. 119. , https://doi.org/10.1016/S0550-3213(03)00550-9, [astro-ph/0209156]Nakamura, K., Second-order Gauge-Invariant Cosmological Perturbation Theory: Current Status (2010) Adv. Astron., 2010, p. 576273. , https://doi.org/10.1155/2010/5762732010576273, [1001.2621]Nakamura, K., Consistency of Equations for the Single Scalar Field Case in Second-order Gauge-invariant Cosmological Perturbation Theory, , [1001.4338]Nakamura, K., Second-order gauge invariant cosmological perturbation theory: Einstein equations in terms of gauge invariant variables (2007) Prog. Theor. Phys., 117, p. 17. , https://doi.org/10.1143/PTP.117.17, [gr-qc/0605108]León, G., Majhi, A., Okon, E., Sudarsky, D., Reassessing the link between B-modes and inflation (2017) Phys. Rev., 96, p. 101301. , https://doi.org/10.1103/PhysRevD.96.101301, [1607.03523]León, G., Majhi, A., Okón, E., Sudarsky, D., Expectation of primordial gravity waves generated during inflation (2018) Phys. Rev., 98, p. 023512. , https://doi.org/10.1103/PhysRevD.98.023512, [1712.02435]http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8871/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/8871oai:repositorio.utb.edu.co:20.500.12585/88712021-02-02 15:07:00.412Repositorio Institucional UTBrepositorioutb@utb.edu.co |