Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions
We recently demonstrated that dispersion-correcting potentials (DCPs), which are atom-centered Gaussian-type functions that were developed for use with B3LYP (Torres and DiLabio in J Phys Chem Lett 3:1738-1744, 2012), greatly improved the ability of the underlying functional to predict non-covalent...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/9070
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/9070
- Palabra clave:
- B3LYP
Density-functional theory
Dispersion interactions
Dispersion-correcting potentials
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_279d71d0b2995064ea3c3b0a5eb1419a |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/9070 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions |
title |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions |
spellingShingle |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions B3LYP Density-functional theory Dispersion interactions Dispersion-correcting potentials |
title_short |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions |
title_full |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions |
title_fullStr |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions |
title_full_unstemmed |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions |
title_sort |
Extension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactions |
dc.subject.keywords.none.fl_str_mv |
B3LYP Density-functional theory Dispersion interactions Dispersion-correcting potentials |
topic |
B3LYP Density-functional theory Dispersion interactions Dispersion-correcting potentials |
description |
We recently demonstrated that dispersion-correcting potentials (DCPs), which are atom-centered Gaussian-type functions that were developed for use with B3LYP (Torres and DiLabio in J Phys Chem Lett 3:1738-1744, 2012), greatly improved the ability of the underlying functional to predict non-covalent interactions. However, the recent application of the B3LYP-DCP approach to study the β-scission of the cumyloxyl radical led to a calculated barrier height that was over-estimated by ca. 8 kcal/mol. We demonstrate in the present work that the source of this error arises from the previously developed carbon atom DCPs, which erroneously alters the electron density in the C-C covalent-bonding region. In this work, we developed a new C-DCP with a form that was expected to less strongly influence the electron density in the covalent bonding region. Tests of the new C-DCP, in conjunction with previously published H-, N-, and O-DCPs, with B3LYP-DCP/6-31?G(2d,2p) on the S66, S22B, HSG-A, and HC12 databases of non-covalently interacting dimers showed that it is one of the most accurate methods available for treating intermolecular interactions, giving mean absolute errors (MAEs) of 0.19, 0.27, 0.16, and 0.18 kcal/mol, respectively. Additional testing on the S12L database of very large complexation systems gave an MAE of 2.6 kcal/mol, demonstrating that the B3LYP-DCP/6-31?G(2d,2p) approach to be one of the best-performing and most feasible methods for treating large systems containing significant non-covalent interactions. Finally, we showed that the modeling of C-C-making/C-C-breaking chemistry is well predicted using the newly developed DCPs. In addition to predicting a barrier height for the β-scission of the cumyloxyl radical, that is, within 1.7 kcal/mol of the high-level value, application of B3LYP-DCP/6-31+G(2d,2p) to 10 databases that include reaction barrier heights and energies, isomerization energies, and relative conformation energies gives performance that is among the best of all available dispersion-corrected density-functional theory approaches. © Springer-Verlag Berlin Heidelberg 2013. |
publishDate |
2013 |
dc.date.issued.none.fl_str_mv |
2013 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:53Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:53Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Theoretical Chemistry Accounts; Vol. 132, Núm. 10; pp. 1-13 |
dc.identifier.issn.none.fl_str_mv |
1432881X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/9070 |
dc.identifier.doi.none.fl_str_mv |
10.1007/s00214-013-1389-x |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
7003322749 17434516800 35094573000 |
identifier_str_mv |
Theoretical Chemistry Accounts; Vol. 132, Núm. 10; pp. 1-13 1432881X 10.1007/s00214-013-1389-x Universidad Tecnológica de Bolívar Repositorio UTB 7003322749 17434516800 35094573000 |
url |
https://hdl.handle.net/20.500.12585/9070 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84881336796&doi=10.1007%2fs00214-013-1389-x&partnerID=40&md5=53d83e02febee97c76c8a0937d46860a |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/9070/1/MiniProdInv.png |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021749566603264 |
spelling |
2020-03-26T16:32:53Z2020-03-26T16:32:53Z2013Theoretical Chemistry Accounts; Vol. 132, Núm. 10; pp. 1-131432881Xhttps://hdl.handle.net/20.500.12585/907010.1007/s00214-013-1389-xUniversidad Tecnológica de BolívarRepositorio UTB70033227491743451680035094573000We recently demonstrated that dispersion-correcting potentials (DCPs), which are atom-centered Gaussian-type functions that were developed for use with B3LYP (Torres and DiLabio in J Phys Chem Lett 3:1738-1744, 2012), greatly improved the ability of the underlying functional to predict non-covalent interactions. However, the recent application of the B3LYP-DCP approach to study the β-scission of the cumyloxyl radical led to a calculated barrier height that was over-estimated by ca. 8 kcal/mol. We demonstrate in the present work that the source of this error arises from the previously developed carbon atom DCPs, which erroneously alters the electron density in the C-C covalent-bonding region. In this work, we developed a new C-DCP with a form that was expected to less strongly influence the electron density in the covalent bonding region. Tests of the new C-DCP, in conjunction with previously published H-, N-, and O-DCPs, with B3LYP-DCP/6-31?G(2d,2p) on the S66, S22B, HSG-A, and HC12 databases of non-covalently interacting dimers showed that it is one of the most accurate methods available for treating intermolecular interactions, giving mean absolute errors (MAEs) of 0.19, 0.27, 0.16, and 0.18 kcal/mol, respectively. Additional testing on the S12L database of very large complexation systems gave an MAE of 2.6 kcal/mol, demonstrating that the B3LYP-DCP/6-31?G(2d,2p) approach to be one of the best-performing and most feasible methods for treating large systems containing significant non-covalent interactions. Finally, we showed that the modeling of C-C-making/C-C-breaking chemistry is well predicted using the newly developed DCPs. In addition to predicting a barrier height for the β-scission of the cumyloxyl radical, that is, within 1.7 kcal/mol of the high-level value, application of B3LYP-DCP/6-31+G(2d,2p) to 10 databases that include reaction barrier heights and energies, isomerization energies, and relative conformation energies gives performance that is among the best of all available dispersion-corrected density-functional theory approaches. © Springer-Verlag Berlin Heidelberg 2013.Recurso electrónicoapplication/pdfenghttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-84881336796&doi=10.1007%2fs00214-013-1389-x&partnerID=40&md5=53d83e02febee97c76c8a0937d46860aExtension of the B3LYP-dispersion-correcting potential approach to the accurate treatment of both inter-and intra-molecular interactionsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1B3LYPDensity-functional theoryDispersion interactionsDispersion-correcting potentialsDiLabio G.A.Koleini M.Torres E.Pauling, L., Corey, R.B., Branson, H.R., The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain (1951) Proc Natl Acad Sci USA, 37, pp. 205-211Astbury, W.T., Some problems in the X-ray analysis of the structure of animal hairs and other protein fibres (1933) Trans Faraday Soc, 29, pp. 193-205Wu, X., Vargas, M.C., Nayak, S., Lotrich, V., Scoles, G., Towards extending the applicability of density functional theory to weakly bound systems (2001) J Chem Phys, 115, pp. 8748-8757Wu, Q., Yang, W., Empirical correction to density functional theory for van der Waals interactions (2002) J Chem Phys, 116, pp. 515-524Grimme, S., Accurate description of van der Waals complexes by density functional theory including empirical corrections (2004) J Comput Chem, 25, pp. 1463-1473Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction (2006) J Comput Chem, 27, pp. 1787-1799Grimme, S., Antony, J., Ehrlich, S., Krieg, H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu (2010) J Chem Phys, 132, p. 154104Johnson, E.R., Becke, A.D., A post-Hartree-Fock model of intermolecular interactions (2005) J Chem Phys, 123, p. 024101Becke, A.D., Arabi, A.A., Kannemann, F.O., Nonempirical density-functional theory for van der Waals interactions (2010) Can J Chem, 88, pp. 1057-1062A benchmark for noncovalent interactions in solids (2012) J Chem Phys, 137, p. 054103. , Otero-de-la-Roza A, Johnson ERTkatchenko, A., Scheffler, M., Accurate molecular van der Waals interactions from ground-state electron density and freeatom reference data (2009) Phys Rev Lett, 102, p. 073005Marom, N., Tkatchenko, A., Rossi, M., Gobre, V.V., Hod, O., Scheffler, M., Kronik, L., Dispersion interactions with density-functional theory: Benchmarking semiempirical and interatomic pairwise corrected density functionals (2011) J Chem Theory Comput, 7, pp. 3944-3951Zhao, Y., Truhlar, D.G., The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals (2008) Theor Chem Acc, 120, pp. 215-241Zhao, Y., Truhlar, D.G., Exploring the Limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions (2008) J Chem Theory Comput, 4, pp. 1849-1868Dilabio, G.A., Accurate treatment of van der Waals interactions using standard density functional theory with effective core-type potentials: Application to carbon-containing dimers (2008) Chem Phys Lett, 455, pp. 348-353Mackie, I.D., Dilabio, G.A., Interactions in large, polyaromatic hydrocarbons dimers: Application of density functional theory with dispersion corrections (2008) J Phys Chem A, 112, pp. 10968-10976Johnson, E.R., Dilabio, G.A., Theoretical study of dispersion binding of hydrocarbon molecules to hydrogen-terminated Silicon(100)-2 9 1 (2009) J Phys Chem C, 113, pp. 5681-5689Mackie, I.D., Dilabio, G.A., Accurate dispersion interactions from standard density-functional theory methods with small basis sets (2010) Phys Chem Chem Phys, 12, pp. 6092-6098Torres, E., Dilabio, G.A., A (nearly) universally applicable method for modeling noncovalent interactions using B3LYP (2012) J Phys Chem Lett, 3, pp. 1738-1744von Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Optimization of effective atom centered potentials for London dispersion forces in density functional theory (2004) Phys Rev Lett, 93, p. 153004von Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory (2005) Phys Rev B, 71, p. 195119Lin, I.-C., Coutinho-Neto, M.D., Felsenheimer, C., von Lilienfeld, O.A., Tavernelli, I., Rothlisberger, U., Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr (2007) Phys Rev B, 75, p. 205131Christiansen, P.A., Lee, Y.S., Pitzer, K.S., Improved ab initio effective core potentials for molecular calculations (1979) J Chem Phys, 71, pp. 4445-4450Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior (1988) Phys Rev A, 38, pp. 3098-3100Lee, C., Yang, W., Parr, R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density (1988) Phys Rev B, 37, pp. 785-789D'Alfonso, C., Bietti, M., Dilabio, G.A., Lanzalunga, O., Salamone, M., Reactions of the phthalimide N-oxyl radical (PINO) with activated phenols: The contribution of pi-stacking interactions to hydrogen atom transfer rates (2013) J Org Chem, 78, pp. 1026-1037Salamone, M., Dilabio, G.A., Bietti, M., Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding (2012) J Org Chem, 77, pp. 10479-10487Salamone, M., Dilabio, G.A., Bietti, M., Hydrogen atom abstraction selectivity in the reactions of alkylamines with the benzyloxyl and cumyloxyl radicals. The importance of structure and of substrate radical hydrogen bonding (2011) J Am Chem Soc, 133, pp. 16625-16634Torres, E., Dilabio, G.A., Density-functional theory with dispersion-correcting potentials for methane: Bridging the efficiency and accuracy gap between high-level wave function and classical molecular mechanics methods (2013) J Chem Theory Comput, , doi:10.1021/ct4003114Boys, S.F., Bernardi, F., The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (1970) Mol Phys, 19, pp. 553-566Sherrill, C.D., Takatani, T., Hohenstein, E.G., An assessment of theoretical methods for nonbonded interactions: Comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S (2009) J Phys Chem A, 113, pp. 10146-10159Mackie, I.D., Dilabio, G.A., Approximations to complete basis set-extrapolated, highly correlated non-covalent interaction energies (2011) J Chem Phys, 135, p. 134318Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Fox, D.J., (2009) Gaussian 09, Revision D.01, , Gaussian, Inc., Wallingford, CTŘezáč, J., Riley, K.E., Hobza, P., Extensions of the S66 data set: More accurate interaction energies and angular-displaced nonequilibrium geometries (2011) J Chem Theory Comput, 7, pp. 3466-3470Jurečka, P., Šponer, J., Černý, J., Hobza, P., Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs (2006) Phys Chem Chem Phys, 8, pp. 1985-1993. , (The ""B"" designation in the set name refers to revised BEs as computed by Marshall et al. in reference 39)Marshall, M.S., Burns, L.A., Sherrill, C.D., Basis set convergence of the coupled-cluster correction, dMP2: Best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases (2011) J Chem Phys, 135, p. 194102Granatier, J., Pitoňák, M., Hobza, P., Accuracy of several wave function and density functional theory methods for description of noncovalent interaction of saturated and unsaturated hydrocarbon dimers (2012) J Chem Theor Comput, 8, pp. 2282-2292Grimme, S., Supramolecular binding thermodynamics by dispersion-corrected density functional theory (2012) Chem Euro J, 18, pp. 9955-9964Goerigk, L., Grimme, S., A general database for main group thermochemistry, kinetics, and noncovalent interactions-assessment of common and reparameterized (meta-)GGA density functionals (2010) J Chem Theory Comput, 6, pp. 107-126Goerigk, L., Grimme, S., Efficient and accurate double-hybridmeta-GGA density functionals-evaluation with the extended GMTKN30 database for general main group thermochemistry, kinetics, and noncovalent interactions (2011) J Chem Theory Comput, 7, pp. 291-309Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Pople, J.A., (2004) Gaussian 03, Revision D.01, , Gaussian Inc., Pittsburgh, PAAvila, D.V., Brown, C.E., Ingold, K.U., Lusztyk, J., Solvent effects on the competitive b-scission and hydrogen atom abstraction reactions of the cumyloxyl radical. Resolution of a long-standing problem (1993) J Am Chem Soc, 115, pp. 466-470Montgomery Jr., J.A., Frisch, M.J., Ochterski, J.W., Petersson, G.A., A complete basis set model chemistry. VII. Use of the minimum population localization method (2000) J Chem Phys, 112, pp. 6532-6542Johnson, E.R., Clarkin, O.J., Dilabio, G.A., Density functional theory based model calculations for accurate bond dissociation enthalpies. 3. a single approach for X-H, X-X, and X-Y (X, Y) C, N, O, S, halogen) bonds (2003) J Phys Chem A, 107, pp. 9953-9963Dilabio, G.A., Johnson, E.R., Otero-De, R.A., Performance of conventional and dispersion-corrected densityfunctional theory methods for hydrogen bonding interaction energies (2013) Phys Chem Chem Phys, 15, pp. 12821-12828Goerigk, L., Kruse, H., Grimme, S., Benchmarking density functional methods against the S66 and S66 9 8 datasets for noncovalent interactions (2011) ChemPhysChem, 12, pp. 3421-3433Faver, J.C., Benson, M.L., He, X.A., Roberts, B.P., Wang, B., Marshall, M.S., Kennedy, M.R., Merz, K.M., Formal estimation of errors in computed absolute interaction energies of protein-ligand complexes (2011) J Chem Theory Comput, 7, pp. 790-797Burns, L.A., Vázquez-Mayagoitia, Á., Sumpter, B.G., Sherrill, C.D., Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchangehole dipole moment (XDM) theory, and specialized functionals (2011) J Chem Phys, 134, p. 084107Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77, pp. 3865-3868Risthaus, T., Grimme, S., Benchmarking of London dispersion-accounting density functional theory methods on very large molecular complexes (2013) J Chem Theory Comput, 9, pp. 1580-1591Karton, A., Tarnopolsky, A., Lamére, J.F., Schatz, G.C., Martin, J.M.L., Highly accurate first-principles benchmark data sets for the parametrization and thermochemical kinetics (2008) J Phys Chem A, 112, pp. 12868-12886Guner, V., Khuong, K.S., Leach, A.G., Lee, P.S., Bartberger, M.D., Houk, K.N., A standard set of pericyclic reactions of hydrocarbons for the benchmarking of computational methods: The performance of ab initio, density functional, CASSCF, CASPT2, and CBSQB3 methods for the prediction of activation barriers, reaction energetics, and transition state geometries (2003) J Phys Chem A, 107, pp. 11445-11459Ess, D.H., Houk, K.N., Activation energies of pericyclic reactions: Performance of DFT, MP2, and CBS-QB3 methods for the prediction of activation barriers and reaction energetics of 1, 3-dipolar cycloadditions, and revised activation enthalpies for a standard set of hydrocarbon pericyclic reactions (2005) J Phys Chem A, 109, pp. 9542-9553Dinadayalane, T.C., Vijaya, R., Smitha, A., Narahari, S.G., Diels-alder reactivity of butadiene and cyclic five-membered dienes ((CH)4X, X = CH2, SiH2, O, NH, PH, and S) with ethylene: A benchmark study (2002) J Phys Chem A, 106, pp. 1627-1633Johnson, E.R., Mori-Sánchez, P., Cohen, A.J., Yang, W., Delocalization errors in density functionals and implications for maingroup thermochemistry (2008) J Chem Phys, 129, p. 204112Krieg, H., Grimme, S., Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed! (2010) Mol Phys, 108, pp. 2655-2666Grimme, S., Steinmetz, M., Korth, M., How to compute isomerization energies of organic molecules with quantum chemical methods (2007) J Org Chem, 72, pp. 2118-2126Huenerbein, R., Schirmer, B., Moellmann, J., Grimme, S., Effects of London dispersion on the isomerization reactions of large organic molecules: A density functional benchmark study (2010) Phys Chem Chem Phys, 12, pp. 6940-6948Řeha, D., Valdes, H., Vondrášek, J., Hobza, P., Abu-Riziq, A., Crews, B., de Vries, M.S., Structure and IR spectrum of phenylalanyl-glycyl-glycine tripeptide in the gas-phase: IR/UV experiments, Ab initio quantum chemical calculations, and molecular dynamic simulations (2005) Chem Euro J, 11, pp. 6803-6817Gruzman, D., Karton, A., Martin, J.M.L., Performance of Ab initio and density functional methods for conformational equilibria of CnH2n?2 alkane isomers (n = 4-8) (2009) J Phys Chem A, 113, pp. 11974-11983Csonka, G.I., French, A.D., Johnson, G.P., Stortz, C.A., Evaluation of density functionals and basis sets for carbohydrates (2009) J Chem Theory Comput, 5, pp. 679-692http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/9070/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD5120.500.12585/9070oai:repositorio.utb.edu.co:20.500.12585/90702021-02-02 14:52:32.092Repositorio Institucional UTBrepositorioutb@utb.edu.co |