Linear power flow formulation for low-voltage DC power grids
This paper presents a reformulation of the power flow problem in low-voltage dc (LVDC) power grids via Taylor's series expansion. The solution of the original nonlinear quadratic model is achieved with this proposed formulation with minimal error when the dc network has a well defined operative...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Tecnológica de Bolívar
- Repositorio:
- Repositorio Institucional UTB
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.utb.edu.co:20.500.12585/8865
- Acceso en línea:
- https://hdl.handle.net/20.500.12585/8865
- Palabra clave:
- Convex approximation
Linear approximation
Low-voltage dc power grids
Nonlinear power flow equations
Taylor's series expansion
C++ (programming language)
Electric load flow
Iterative methods
MATLAB
Nonlinear equations
Numerical methods
Taylor series
Convex approximation
Linear approximations
Low voltages
Nonlinear power flow
Taylor's series expansion
Electric power transmission networks
- Rights
- restrictedAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
UTB2_2758f8400603c7e44b70e17e1346b760 |
---|---|
oai_identifier_str |
oai:repositorio.utb.edu.co:20.500.12585/8865 |
network_acronym_str |
UTB2 |
network_name_str |
Repositorio Institucional UTB |
repository_id_str |
|
dc.title.none.fl_str_mv |
Linear power flow formulation for low-voltage DC power grids |
title |
Linear power flow formulation for low-voltage DC power grids |
spellingShingle |
Linear power flow formulation for low-voltage DC power grids Convex approximation Linear approximation Low-voltage dc power grids Nonlinear power flow equations Taylor's series expansion C++ (programming language) Electric load flow Iterative methods MATLAB Nonlinear equations Numerical methods Taylor series Convex approximation Linear approximations Low voltages Nonlinear power flow Taylor's series expansion Electric power transmission networks |
title_short |
Linear power flow formulation for low-voltage DC power grids |
title_full |
Linear power flow formulation for low-voltage DC power grids |
title_fullStr |
Linear power flow formulation for low-voltage DC power grids |
title_full_unstemmed |
Linear power flow formulation for low-voltage DC power grids |
title_sort |
Linear power flow formulation for low-voltage DC power grids |
dc.subject.keywords.none.fl_str_mv |
Convex approximation Linear approximation Low-voltage dc power grids Nonlinear power flow equations Taylor's series expansion C++ (programming language) Electric load flow Iterative methods MATLAB Nonlinear equations Numerical methods Taylor series Convex approximation Linear approximations Low voltages Nonlinear power flow Taylor's series expansion Electric power transmission networks |
topic |
Convex approximation Linear approximation Low-voltage dc power grids Nonlinear power flow equations Taylor's series expansion C++ (programming language) Electric load flow Iterative methods MATLAB Nonlinear equations Numerical methods Taylor series Convex approximation Linear approximations Low voltages Nonlinear power flow Taylor's series expansion Electric power transmission networks |
description |
This paper presents a reformulation of the power flow problem in low-voltage dc (LVDC) power grids via Taylor's series expansion. The solution of the original nonlinear quadratic model is achieved with this proposed formulation with minimal error when the dc network has a well defined operative conditions. The proposed approach provides an explicit solution of the power flow equations system, which avoids the use of iterative methods. Such a characteristic enables to provide accurate results with very short processing times when real operating scenarios of dc power grids are analyzed. Simulation results verify the precision and speed of the proposed method in comparison to classical numerical methods for both radial and mesh configurations. Those simulations were performed using C++ and MATLAB, which are programming environments commonly adopted to solve power flows. © 2018 Elsevier B.V. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.date.available.none.fl_str_mv |
2020-03-26T16:32:31Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.spa.none.fl_str_mv |
Artículo |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Electric Power Systems Research; Vol. 163, pp. 375-381 |
dc.identifier.issn.none.fl_str_mv |
03787796 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12585/8865 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.epsr.2018.07.003 |
dc.identifier.instname.none.fl_str_mv |
Universidad Tecnológica de Bolívar |
dc.identifier.reponame.none.fl_str_mv |
Repositorio UTB |
dc.identifier.orcid.none.fl_str_mv |
56919564100 55791991200 57202996445 22836502400 36449223500 |
identifier_str_mv |
Electric Power Systems Research; Vol. 163, pp. 375-381 03787796 10.1016/j.epsr.2018.07.003 Universidad Tecnológica de Bolívar Repositorio UTB 56919564100 55791991200 57202996445 22836502400 36449223500 |
url |
https://hdl.handle.net/20.500.12585/8865 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessRights.none.fl_str_mv |
info:eu-repo/semantics/restrictedAccess |
dc.rights.cc.none.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
eu_rights_str_mv |
restrictedAccess |
dc.format.medium.none.fl_str_mv |
Recurso electrónico |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Ltd |
publisher.none.fl_str_mv |
Elsevier Ltd |
dc.source.none.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050132713&doi=10.1016%2fj.epsr.2018.07.003&partnerID=40&md5=3823f68cab40910397b872622d6ee94c |
institution |
Universidad Tecnológica de Bolívar |
bitstream.url.fl_str_mv |
https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/1/MiniProdInv.png https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/4/1-s2.0-S0378779618301962-main.pdf.jpg https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/2/1-s2.0-S0378779618301962-main.pdf https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/3/1-s2.0-S0378779618301962-main.pdf.txt |
bitstream.checksum.fl_str_mv |
0cb0f101a8d16897fb46fc914d3d7043 9dc75ec0dde0c8a7e568dfcccc21a3ee f4fcd955bb73b74f186acd1e778f4c43 0fcfc76a1317cc6b5900fed0742cfe7b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional UTB |
repository.mail.fl_str_mv |
repositorioutb@utb.edu.co |
_version_ |
1814021741838598144 |
spelling |
2020-03-26T16:32:31Z2020-03-26T16:32:31Z2018Electric Power Systems Research; Vol. 163, pp. 375-38103787796https://hdl.handle.net/20.500.12585/886510.1016/j.epsr.2018.07.003Universidad Tecnológica de BolívarRepositorio UTB5691956410055791991200572029964452283650240036449223500This paper presents a reformulation of the power flow problem in low-voltage dc (LVDC) power grids via Taylor's series expansion. The solution of the original nonlinear quadratic model is achieved with this proposed formulation with minimal error when the dc network has a well defined operative conditions. The proposed approach provides an explicit solution of the power flow equations system, which avoids the use of iterative methods. Such a characteristic enables to provide accurate results with very short processing times when real operating scenarios of dc power grids are analyzed. Simulation results verify the precision and speed of the proposed method in comparison to classical numerical methods for both radial and mesh configurations. Those simulations were performed using C++ and MATLAB, which are programming environments commonly adopted to solve power flows. © 2018 Elsevier B.V.Universidad Nacional de Colombia Universidad Tecnológica Nacional Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: P-17211, UNAL-ITM-39823This work was supported by Universidad Tecnológica de Bolivar , Universidad Tecnológica de Pereira , Instituto Tecnológico Metropolitano , Universidad Nacional de Colombia and COLCIENCIAS under the research projects P-17211 and UNAL-ITM-39823 and the Doctoral Scholarship 727-2015. Moreover, this work was also supported by the PhD program in Engineering of the Universidad Tecnológica de Pereira and the Ph.D. program “Doctorado en Ingeniería – Línea de Investigación en Automática” of the Universidad Nacional de Colombia.Recurso electrónicoapplication/pdfengElsevier Ltdhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial 4.0 Internacionalhttp://purl.org/coar/access_right/c_16echttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85050132713&doi=10.1016%2fj.epsr.2018.07.003&partnerID=40&md5=3823f68cab40910397b872622d6ee94cLinear power flow formulation for low-voltage DC power gridsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Convex approximationLinear approximationLow-voltage dc power gridsNonlinear power flow equationsTaylor's series expansionC++ (programming language)Electric load flowIterative methodsMATLABNonlinear equationsNumerical methodsTaylor seriesConvex approximationLinear approximationsLow voltagesNonlinear power flowTaylor's series expansionElectric power transmission networksMontoya O.D.Grisales-Noreña L.F.González-Montoya D.Ramos-Paja C.A.Garces A.Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: an overview (2015) Electr. Power Syst. Res., 119, pp. 407-417Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S., State of the art in research on microgrids: a review (2015) IEEE Access, 3, pp. 890-925Sreedharan, P., Farbes, J., Cutter, E., Woo, C.K., Wang, J., Microgrid and renewable generation integration: University of California, San Diego (2016) Appl. Energy, 169, pp. 709-720Garces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153Garces, A., A linear three-phase load flow for power distribution systems (2016) IEEE Trans. Power Syst., 31, pp. 827-828Machado, J.E., Griñó, R., Barabanov, N., Ortega, R., Polyak, B., On existence of equilibria of multi-port linear ac networks with constant-power loads (2017) IEEE Trans. Circuits Syst. I: Regul. Pap., 64, pp. 2772-2782Dragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids – Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31, pp. 4876-4891IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems With Electric Power Systems, IEEE Std 1547.4-2011 (2011), pp. 1-54Justo, J.J., Mwasilu, F., Lee, J., Jung, J.W., AC-microgrids versus DC-microgrids with distributed energy resources: a review (2013) Renew. Sustain. Energy Rev., 24, pp. 387-405Belkhayat, M., Cooley, R., Abed, E.H., Stability and dynamics of power systems with regulated converters (1995) 1995 IEEE International Symposium on Circuits and Systems, 1995, ISCAS ‘95, vol. 1, pp. 143-145Rouzbehi, K., Miranian, A., Luna, A., Rodriguez, P., DC voltage control and power sharing in multiterminal DC grids based on optimal DC power flow and voltage-droop strategy (2014) IEEE J. Emerg. Sel. Top. Power Electron., 2, pp. 1171-1180Ma, J., Yuan, L., Zhao, Z., He, F., Transmission loss optimization-based optimal power flow strategy by hierarchical control for dc microgrids (2017) IEEE Trans. Power Electron., 32, pp. 1952-1963Garces, A., On convergence of Newtons method in power flow study for DC microgrids (2018) IEEE Trans. Power Syst., p. 1Buire, J., Guillaud, X., Colas, F., Dieulot, J.Y., Alvaro, L.D., Combination of linear power flow tools for voltages and power estimation on MV networks (2017) CIRED Open Access Proc. J., 2017, pp. 2157-2160Maknouninejad, A., Qu, Z., Lewis, F.L., Davoudi, A., Optimal, nonlinear, and distributed designs of droop controls for DC microgrids (2014) IEEE Trans. Smart Grid, 5, pp. 2508-2516Frank, S., Steponavice, I., Rebennack, S., Optimal power flow: a bibliographic survey II (2012) Energy Syst., 3, pp. 259-289Gandini, D., de Almeida, A.T., Direct current microgrids based on solar power systems and storage optimization, as a tool for cost-effective rural electrification (2017) Renew. Energy, 111, pp. 275-283Kumar, Y.V.P., Bhimasingu, R., Electrical machines based dc/ac energy conversion schemes for the improvement of power quality and resiliency in renewable energy microgrids (2017) Int. J. Electr. Power Energy Syst., 90, pp. 10-26Meng, L., Shafiee, Q., Trecate, G.F., Karimi, H., Fulwani, D., Lu, X., Guerrero, J.M., Review on control of dc microgrids and multiple microgrid clusters (2017) IEEE J. Emerg. Sel. Top. Power Electron., 5, pp. 928-948Li, C., Chaudhary, S.K., Savaghebi, M., Vasquez, J.C., Guerrero, J.M., Power flow analysis for low-voltage ac and dc microgrids considering droop control and virtual impedance (2017) IEEE Trans. Smart Grid, 8, pp. 2754-2764Huang, S., Wu, Q., Zhao, H., Liu, Z., Geometry of power flows and convex-relaxed power flows in distribution networks with high penetration of renewables (2016) Energy Proc., 100, pp. 1-7. , 3rd International Conference on Power and Energy Systems Engineering, CPESE 2016, 8–10 September 2016, Kitakyushu, JapanGarces, A., Montoya, D., Torres, R., Garces et al., 2016 (2016) Optimal power flow in multiterminal hvdc systems considering dc/dc converters, 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pp. 1212-1217Barabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I: Regul. Pap., 63, pp. 114-121de Moura, A.P., de Moura, A.A., Oliveira, D., Fernandes, E., Linear power flow V-theta (2012) Electr. Power Syst. Res., 84, pp. 45-57Wang, Y., Zhang, N., Li, H., Yang, J., Kang, C., Linear three-phase power flow for unbalanced active distribution networks with pv nodes (2017) CSEE J. Power Energy Syst., 3, pp. 321-324Hörsch, J., Ronellenfitsch, H., Witthaut, D., Brown, T., Linear optimal power flow using cycle flows (2018) Electr. Power Syst. Res., 158, pp. 126-135Di Fazio, A.R., Russo, M., Valeri, S., De Santis, M., Linear method for steady-state analysis of radial distribution systems (2018) Int. J. Electr. Power Energy Syst., 99, pp. 744-755Marti, J., Ahmadi, H., Bashualdo, L., Linear power flow formulation based on a voltage-dependent load model (2014) 2014 IEEE PES General Meeting – Conference Exposition, p. 1Zhang, H., Vittal, V., Heydt, G.T., Quintero, J., A relaxed ac optimal power flow model based on a Taylor series (2013) 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp. 1-5Wang, W., Barnes, M., Power flow algorithms for multi-terminal VSC-HVDC with droop control (2014) IEEE Trans. Power Syst., 29, pp. 1721-1730Luo, Z.Q., Ma, W.K., So, A.M.C., Ye, Y., Zhang, S., Semidefinite relaxation of quadratic optimization problems (2010) IEEE Signal Process. Mag., 27, pp. 20-34Guimaraes, D.A., Floriano, G.H.F., Chaves, L.S., A tutorial on the CVX system for modeling and solving convex optimization problems (2015) IEEE Latin Am. Trans., 13, pp. 1228-1257Huang, G., Ongsakul, W., Managing the bottlenecks in parallel Gauss–Seidel type algorithms for power flow analysis (1994) IEEE Trans. Power Syst., 9, pp. 677-684Zeng, J., Lin, J., Wang, Z., An improved Gauss–Seidel algorithm and its efficient architecture for massive mimo systems (2018) IEEE Trans. Circuits Syst. II: Express Briefs, p. 1Abdi, H., Beigvand, S.D., Scala, M.L., A review of optimal power flow studies applied to smart grids and microgrids (2017) Renew. Sustain. Energy Rev., 71, pp. 742-766Zhou, E.Z., Object-oriented programming, C++ and power system simulation (1996) IEEE Trans. Power Syst., 11, pp. 206-215Pandit, S., Soman, S.A., Khaparde, S.A., Design of generic direct sparse linear system solver in C++ for power system analysis (2001) IEEE Trans. Power Syst., 16, pp. 647-652Rebizant, W., Solak, K., Brusilowicz, B., Benysek, G., Kempski, A., Rusinski, J., Coordination of overcurrent protection relays in networks with superconducting fault current limiters (2018) Int. J. Electr. Power Energy Syst., 95, pp. 307-314http://purl.org/coar/resource_type/c_6501THUMBNAILMiniProdInv.pngMiniProdInv.pngimage/png23941https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/1/MiniProdInv.png0cb0f101a8d16897fb46fc914d3d7043MD511-s2.0-S0378779618301962-main.pdf.jpg1-s2.0-S0378779618301962-main.pdf.jpgGenerated Thumbnailimage/jpeg97652https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/4/1-s2.0-S0378779618301962-main.pdf.jpg9dc75ec0dde0c8a7e568dfcccc21a3eeMD54ORIGINAL1-s2.0-S0378779618301962-main.pdf1-s2.0-S0378779618301962-main.pdfapplication/pdf444962https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/2/1-s2.0-S0378779618301962-main.pdff4fcd955bb73b74f186acd1e778f4c43MD52TEXT1-s2.0-S0378779618301962-main.pdf.txt1-s2.0-S0378779618301962-main.pdf.txtExtracted texttext/plain46109https://repositorio.utb.edu.co/bitstream/20.500.12585/8865/3/1-s2.0-S0378779618301962-main.pdf.txt0fcfc76a1317cc6b5900fed0742cfe7bMD5320.500.12585/8865oai:repositorio.utb.edu.co:20.500.12585/88652022-03-03 02:21:12.067Repositorio Institucional UTBrepositorioutb@utb.edu.co |